调谐质量阻尼器 (TMD) 是一种由质量块、弹簧和阻尼器组成的装置,它附在结构上,用于降低结构的动态响应。阻尼器的频率被调整到特定的结构频率,这样当该频率被激发时,阻尼器将与结构运动产生异相共振。能量由作用于结构的阻尼器惯性力耗散。TMD 概念最早由 Frahm 于 1909 年应用 (Frahm, 1909),以减少船舶的横摇运动以及船体振动。Ormondroyd 和 Den Hartog (1928) 在论文中提出了 TMD 理论,随后 Den Hartog 在其关于机械振动的书中 (1940) 详细讨论了最佳调谐和阻尼参数。初始理论适用于受到正弦力激励的无阻尼 SDOF 系统。许多研究人员研究了将该理论扩展到阻尼 SDOF 系统。Randall 等人做出了重大贡献。(1981)、Warburton (1981, 1982)、Warburton 和 Ayorinde (1980) 以及 Tsai 和 Lin (1993)。本章首先介绍 TMD 设计的介绍性示例,并简要描述了建筑结构中调谐质量阻尼器的一些实现。接下来讨论受到谐波力激励和谐波地面运动的 SDOF 系统的调谐质量阻尼器的严格理论。考虑了各种情况,包括连接到无阻尼 SDOF 系统的无阻尼 TMD、连接到无阻尼 SDOF 系统的阻尼 TMD 以及连接到阻尼 SDOF 系统的阻尼 TMD。时间历史响应
摘要:继 2020 年首次演示冷却至量子基态的悬浮纳米球(U. Delić 等人,Science,第 367 卷,第 892 页,2020 年)之后,宏观量子传感器似乎即将问世。与其他量子系统相比,纳米球的质量较大,这增强了纳米粒子对引力和惯性力的敏感性。从这个角度来看,我们描述了光学悬浮纳米粒子实验的特点(J. Millen、TS Monteiro、R. Pettit 和 AN Vamivakas,“悬浮粒子的光力学”,Rep. Prog. Phys.,第 83 卷,2020 年,艺术编号 026401)及其在加速度传感方面的拟议用途。悬浮纳米粒子平台的独特之处在于它不仅可以实现量子噪声限制的传导,量子计量学预测其灵敏度将达到 10 − 15 ms − 2 量级(S. Qvarfort、A. Sera fini、PF Barker 和 S. Bose,“通过非线性光力学进行重力测量”,Nat. Commun.,第 9 卷,2018 年,文章编号 3690),而且可以实现长寿命量子空间叠加以增强重力测量。这遵循了开发利用叠加或纠缠的传感器(如冷原子干涉仪)的全球趋势。得益于这些现有量子技术的重大商业开发,我们讨论了将悬浮纳米粒子研究转化为应用的可行性。
本小组包括四篇论文,它们为能源政策如何通过选举、政治交流、社区参与和地方经济变化等机制影响政治的问题提供了定性和定量证据。三篇论文探讨了美国清洁能源投资的政治影响。在“‘降低通胀’能否减少两极分化?评估美国绿色产业政策的反馈”一文中,Bergquist 研究了联邦清洁能源投资是否为清洁能源转型产生了扩张动力(正反馈)或反作用力、惯性力(负反馈)。在“通胀降低法案繁荣城镇”(Carley 等人)和“克服宾夕法尼亚州公平中期转型的协调障碍”(Constantino 和 Caggiano)中,作者重点关注与联邦清洁能源投资相关的分配和程序正义问题。在第四篇论文《供应侧能源转型对选举的影响》中,马丁内斯-阿尔瓦雷斯和罗斯研究了墨西哥清洁能源政策在选举中遭遇的强烈反对,该国两大政党对是否以及如何逐步淘汰化石燃料持截然不同的立场。四篇论文共同阐明了能源政策的实施、传播和公众体验;研究了公众对能源政策体验的不均衡分布;并展示了这些公众体验如何在政治体系中产生反响。这些论文还为能源转型以外的政治提供了重要见解,例如,加深了对与大规模经济变化相关的分配考虑的理解;完善了政策反馈发生的范围条件;并通过阐明开采量下降(而不是增加)的影响来扩展对资源诅咒的理解。
在过去十年中,太空探索的力度大大增加,因此需要新的方法来研究行星和其他天体。现代趋势是制造能够从更高角度侦察表面的航天器,而无人机已被证明是最有用的。一般来说,无人机以其灵活性、速度、悬停能力、避障、目标跟踪和跟随而闻名。认为任何类型的无人机都适合太空应用都是合理的,因为它们都具有可以满足任务要求的优势。太空领域的设计选择深受一些限制的影响,例如最大尺寸、总重量、成本、环境、温度。此外,还需要考虑使平台能够执行任务的基本要求,这些要求通常由各种子系统来确保:热、通信、机载数据处理、电力、推进以及制导、导航和控制。太空探索的主要焦点是火星和旋翼机概念:事实上,Ingenuity 直升机就是一个很好的例子,如图 1 所示,它于 2021 年在红色星球上进行了首次飞行。火星大气与地球不同,这带来了特殊的空气动力学挑战。第一个很大的变化是低大气密度,再加上无人机尺寸有限,导致弦基雷诺数流动非常低(103-104)[1]。这些流动更多的是以粘性力而非惯性力为特征,导致机翼性能效率下降。这会影响升力,但较低的重力加速度(3.71 m/s2)略微补偿了升力。自 20 世纪 30 年代以来,人们在该领域进行了各种研究,并且可以确定三个描述流动行为的区域:亚临界( Re < 10 5 )、临界( Re ∼ 10 5 )和超临界( Re > 10 5 )。对于火星研究,重点放在亚临界区域,其中层流边界层倾向于分离,导致阻力系数较大,升力系数降低。这种层流分离流的不稳定性导致向湍流的转变,这会引起重新附着,从而产生层流分离气泡,影响翼部的性能。可以采用各种方法来进行气动分析:例如,将流动视为完全层流 [2] 或使用 RANS、LES
简介:地震会对基础设施造成大规模破坏并造成人员伤亡。从 1990 年到 2010 年,印度经历了 9 次以上大地震,造成约 30,000 人死亡。虽然某些地区(例如 IS 1893(第 1 部分)-2016 规定的地震区 V 中的地区)更容易发生地震,但印度没有一个地区可以完全免受这种威胁。每天都会发生许多小地震。过去地震中建筑物的糟糕表现暴露了它们的脆弱性,促使工程师和建筑师优先设计更具抗震效率的结构。印度约 60% 的陆地面临中度至极重度地震的风险。人口稀少地区的大地震造成的破坏可能小于人口稠密地区的中度地震。大地震后的实地调查显示,大多数人员伤亡是由于建筑物倒塌造成的。缺乏抗震知识及其在建筑设计和施工中的应用导致结构失效。许多农村和城市建筑都是低层、非工程结构,最容易受到损坏。地震期间,地震波向四面八方辐射,水平振动尤其容易导致结构损坏。这些波会导致建筑物地基移动,从而在结构构件中产生惯性力。建筑物在地震中的抗震性能受其形状、大小和几何形状以及载荷路径特性的影响。抗震设计抗震设计理念旨在保护结构和人的生命。它要求承重构件在轻微、频繁的震动中保持完好无损,在中等、偶尔的震动中承受可修复的损坏,并在罕见的强烈震动中承受严重损坏而不倒塌。本研究考察了这些常见建筑类型的施工实践。在必要时,参考规范规定,为当地施工实践提供了建议。此外,本研究还讨论了抗震技术的潜在未来趋势。研究目标:本研究旨在调查地震对传统建筑和抗震建筑的影响。此外,该项目还旨在研究增强建筑结构抗震能力的先进材料及其开发方法。更具体的目标包括:
博帕尔。摘要- 近年来,铝合金在活塞制造中的应用引起了广泛关注,因为它比铸铁等传统材料具有许多优势。本综述旨在全面分析铝合金在活塞制造中的应用,重点介绍其机械性能、性能和潜在挑战。铝合金活塞的主要优势在于其重量轻,有助于减少往复质量并提高发动机效率。这一特性可以提高发动机转速、降低油耗并提高车辆整体性能。此外,铝合金活塞具有出色的导热性,有助于高效散热并最大限度地降低热膨胀相关问题的风险。关键词-铝合金、活塞、强度、综述、变形、温度分布。1. 简介铝活塞重量轻,因此与铸铁活塞相比,惯性力可以降低到更大程度。在 Al-Si 活塞合金中添加超过 12% 的硅以在高温下工作,因此由于添加 Si,活塞的热强度可以提高。发动机运转时活塞顶部的温度达到约 300°C,在此温度范围内膨胀程度超过铁,因此,为了将铝活塞与铸铁气缸正确配合,活塞在室温下必须松配合。添加硅会使活塞变硬,不易磨损,因此增加了基于纤维和基质成分百分比可实现的优势。MMC 的缺点是 a) 生产系统昂贵,b) 技术仍然相对不成熟,c) 生产过程复杂(尤其是长纤维 MMC),d) 专门生产服务的经验有限,e) 在颗粒 MMC 的情况下难以实现纤维颗粒的适当扩散,f) 颗粒分布不一致,g) 长纤维充当应力集中器,h) 不均匀性质和 i) 各向异性材料。这些缺点限制了金属基复合材料在汽车应用中的使用。除了用于活塞的先进材料外,还采用一些涂层来改善活塞性能。这些涂层技术将在下一节中讨论。过去几十年的研究和创新催生出复合材料,从用于汽车车身的玻璃纤维发展到用于航空航天和其他各种应用的颗粒复合材料。有些复合材料表现出更高的耐磨性、抗氧化性和抗腐蚀性。这些设计和特性机会是传统单片(非增强)材料无法实现的。复合材料在 20 世纪 70 年代被引入工程应用时被称为“未来材料”。由两种或两种以上可明显识别的成分组成的材料在日常生活中被用作天然复合材料。天然复合材料包括木材、土壤骨料、矿物、岩石等。复合材料是最具创新性的材料,由于材料性能的增强,它取代了航空航天、汽车、结构工程等领域的传统材料。这些复合材料是通过传统的金属生产和加工现场生产的。碳化物含量高的钢或石墨以及含有金属粘合剂、碳化钨和碳化物也属于这类复合材料。2. 现有文献综述在文献综述的基础上,重点介绍了研究空白。此外,本章最后还提出了研究目标。Singh 等人 [1] 本文的目的是研究铝和镁合金活塞的应力分布和热分析。在室温下,WE43A 的强度低于 Al-7Si 活塞,但在高温下,由于 WE43A 的机械和热性能优于 Al-7Si,因此可以承受更高的效率。因此,可以得出结论,对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。
