将WDS绝缘钢包与过去3个月的未绝缘情况进行了比较。在感应炉的熔化过程中,平均15-20°C(59-68°F)减少了,这相当于节省150-160 kW hr/heat。一天,至少从感应炉中挖出12次热量。此外,随着WDS绝缘弹性的固定时间的增加,每分钟的温度下降为1°C(34°F),而原始的钢包使用的原始弹性则与> 2°C(> 36°F)相比。
洗衣机/干燥机能量Star®干衣机比传统的干衣机使用少约20%,而最有效的干衣机使用热泵技术。电动范围感应S型比天然气和电阻炉更节能。感应炉的效率高达90%,而电阻炉灶约为75%,气炉效率约为40%。
PIDP Pakistan Industrial Decarbonization Programme NCCP National Climate Change Policy NDCs Nationally Determined Contributions LT-LEDS Long-Term Low Emission Development Strategies CBAM Carbon Border Adjustment Mechanism EAF Electric Arc Furnace BF-BOF Blast Furnace - Basic Oxygen Furnace RE Renewable Energy CCUS Carbon Capture, Utilization, and Storage PACRA Pakistan Credit Rating Agency OECD Organisation for Economic Co-operation and开发WTO世界贸易组织如果感应炉PSDP公共部门开发计划ESG环境,社会和治理温室气体温室气体DRI直接减少铁CPEC中国 - 巴基斯坦经济走廊FDI外国外国直接投资PSM巴基斯坦钢铁厂AI人工智能IOT人工智能IOT Internet Internet Internet
固体金属材料中的磨损行为非常重要,因为它与生产成本有关。在这项工作中,磨损和磨损速率的行为显示在通过中频率感应炉中熔化而产生的高Fe-Cr-C合金产生的磨球,以及通过自动ϐ无孔成型机 - 脱落的造型机器的造型。总测试时间为(12小时)。磨料磨损速率,即耐磨性乘以mg/kg.hr的测试时间。通过用(50千克)(50 kg)旋转球,在圆形截面的柴油工作混合物内旋转球,倾斜45并旋转30 rpm,对三种合金中每种磨球:BC26,BC18和BC13进行测试。在文本中发现了加权和硬度测试结果,使用光谱分析ARL 34000 OE测试化学成分。获得的所有结果显示在表格中,文本中显示了图。因此,可以说,增加Cr%,增加硬度并降低磨损速率,并且其含有的Cr%和C%越高,磨损速率越低,并且耐磨损较高。
气候化将完全密封热外壳,并在整个空间中允许有效的能源利用(目前,总计21,300平方英尺的内部空间中只有15%(4000平方英尺)用于能量系统,Basilica将安装一个新的120kW太阳能阵列,可与现有的50 kW Solar Array一起使用。附加的太阳系将产生足够的能量来为新的三菱超热Y系列热泵系统供电。新的HVAC系统将替换当前的燃气加热器,并与目前在两座建筑物中安装的四个M系列拆分系统一起工作,并将在建筑物中扩展将提供加热或冷却的建筑物。还计划了一个电池存储系统,以支持减轻峰值负载(基于8760小时的能源使用;站点位于国家电网Hudson LSRV区域)。整个校园的热水需求将与Stiebol Eltron或Sanden制造的热泵热水器一起满足;商业感应炉将安装在厨房(当前使用的丙烷)。还将添加其他汽车充电站(四个级别2充电器)。
燃料燃烧炉:应预热空坩埚,直至其达到均匀的鲜红色(约 900°C),以预处理釉料。预热时间取决于坩埚的大小。对于大容量坩埚和高输出燃烧器的熔炉,应在初始阶段控制升温速度,以尽量减少热应力。从环境温度到红热所需的时间通常长达 1 小时。避免火焰直接撞击坩埚表面。感应炉:加热过程取决于炉子频率、线圈尺寸和熔化金属的电阻率。建议尽可能预热空坩埚。最初应限制功率输入率,直到坩埚整个表面变成鲜红色。预热所需的时间取决于坩埚的大小,但通常在 20 – 40 分钟范围内。一旦坩埚的三分之一充满熔融金属,功率就可以增加到更高的水平。碳化硅坩埚从感应场吸收成比例的高功率。应注意不要使坩埚过热。实际最大功率设置应根据经验进行评估,并取决于坩埚的容量。应监测坩埚内壁的外观是否有过热迹象,一旦全部炉料熔化,功率应降低。
摘要:本研究对先进生物材料合金快速凝固Co-Cr-Mo-C合金的微观组织和腐蚀性能进行了研究。采用快速凝固铸造方法不仅使受快速凝固影响较大的ε -HCP相的形成量发生了显著变化,而且电化学行为和凝固组织也发生了显著变化。本研究利用OM、SEM、EDS、XRD和动态电位仪研究了快速凝固Co-Cr-Mo-C合金。将钴合金锭放入充满氩气的感应炉中熔化,然后浇铸到V型砂型铜模中,制备快速凝固样品,并在不同的冷却速度下测量其性能。微观组织检查表明合金的结构主要由柱状树枝状组织组成,碳化物分布在一次和二次树枝状臂内,快速凝固将获得更细的树枝状组织以及改进的碳化物分布。这种结构将改善合金的腐蚀行为,并在以林格氏溶液作为电解质进行测试时降低其腐蚀速率。关键词:生物材料;钴铬合金;快速凝固;髋关节和膝关节植入物;腐蚀。
研究了生物质与氧化铁的太阳能气化,用于合成气和铁的生产。太阳能和生物质都是很有前途的可再生能源。气化过程将固体碳质原料转化为燃料或化学品。然而,传统工艺需要原料的部分燃烧来供应能量,并且由于燃烧产物的稀释,固有的氧气生产成本高,合成气热值低。使用固体氧化物的化学循环气化是解决这些问题的另一种选择。通过提供集中的太阳能作为高温热源,可以从该过程中生产出更多的合成气,同时能够将太阳能储存成可调度的燃料。这项工作提出探索在高加热速率下在氧化铁上进行太阳能生物质气化,这代表了太阳能反应器中获得的条件。计算了 100 至 1,500 ◦ C 之间气化反应的热力学平衡,并报告了使用专门设计的感应炉在 1,100 ◦ C 下以氧化铁、水或二氧化碳作为氧化剂进行生物质气化的实验结果。固体产物分析表明,氧化铁可以根据氧载体的比例还原为金属铁。这些结果表明,氧化铁是一种有效的太阳能生物质气化材料,可通过一种新颖的绿色冶金工艺同时生产合成气和铁。
普吉特湾海军造船厂和中级维修设施高压电工 (NAVFAC):为 PSNS 和其他西北地区海军设施维护、维修和安装高压变电站和配电设备。船舶装配工(车间 11):制造、安装、改装和维修海军舰艇的内部和外部组件和结构。这些结构包括舱壁、地基、门、甲板、舱口、上层建筑、油箱、海底箱、浮筒和甲板室。钣金技工(车间 17):设计、制造、安装和维修海军舰艇上的通风设备、家具、轻型舱壁和门。焊工(车间 26):在海军舰艇的大修、维修和建造中使用复杂的热工艺连接各种金属。电镀工(车间 31):完成各种金属表面的功能性和工业性槽镀和便携式选择性电镀以修复船上部件。其他工艺包括使用抛光技术对各种金属表面进行化学清洗和尺寸恢复。电子工业控制机修工(车间 31):维护、排除故障和修理集成到工业系统(如数控和计算机数控机床、激光测量系统、自动焊接系统、平衡和测量机以及感应炉)的所有线性、数字和光纤电子设备。机械师(车间 31):各种船舶部件的内部维修和测试。使用传统和计算机控制机械制造新部件。能够加工从 ¼ 英寸螺钉到 50 英尺长的推进轴的所有东西。生产机械电工(车间 06):维护、安装、修理、改造和排除故障多种类型的工业机械、工具和设备。机械、工具和设备包括:车床、铣床、压力机、焊接和火焰切割设备、热封机和橡胶磨机。船用机械机修工(车间 38):排除故障、修理、更换和维护海军舰艇上的各种机械系统。工作范围覆盖整艘船——从桅杆天线到螺旋桨,从船头到船尾。船舶电工(车间 51):安装、连接和操作测试船上电气系统和组件,包括电力和照明系统、声控电话、电热和通风设备。船舶管道工(车间 56):安装、维修、改造和更换海军舰艇上的管道系统。系统包括饮用水、航空燃料和高压蒸汽。
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?