2023 年秋季 EEE 598 先进电子封装和集成工艺和工具 讲师:Hongbin Yu,ERC 159,电话:965-4455,电子邮件:yuhb@asu.edu 课程目标 随着政府和私营部门对将先进半导体制造能力转移到国内的兴趣和努力不断增加,微电子封装和代际,特别是先进封装能力,受到了越来越多的关注。本课程旨在介绍微电子封装和集成中使用的基本和更重要的先进工艺和工具,例如扇出晶圆级封装、中介层技术和硅通孔、混合键合,这些工艺和工具能够实现 2.5 D 和 3D 芯片或小芯片的集成,从而显着提高芯片的性能。这些过程中使用的工具也将介绍,其中一些将来自在亚利桑那州有业务的供应商。我们将讨论这些先进封装工艺所实现的应用示例,例如手机、游戏机、射频、光子学和数据中心中的应用。课程大纲
通用智能涉及将许多信息源整合成一个连贯、自适应的世界模型。要设计和构建通用智能硬件,我们必须考虑神经科学和超大规模集成的原理。对于能够实现通用智能的大型神经系统,用于通信的光子学和用于计算的电子学的属性是互补和相互依赖的。使用光进行通信可以实现跨大型系统的高扇出率和低延迟信号传输,而不会出现依赖流量的瓶颈。对于计算,约瑟夫森电路固有的非线性、高速度和低功耗有利于复杂的神经功能。在 4 K 下操作可以使用单光子探测器和硅光源,这两个特性可以实现效率和经济的可扩展性。在这里,我概述了光电硬件的概念,从突触电路开始,继续进行晶圆级集成,并扩展到与光纤束互连的系统,可能达到人脑的规模甚至更大。
论文提出了一种功耗为零的技术。扇出和异或不是双射(它们不是从唯一的 x 到唯一的 y)。但两者都可以表示为单个可逆函数。扇出有额外的输入,而异或有额外的输出。垃圾:未用于函数的位。论文的基本定理:每个有限函数都可以通过将其嵌入更大的空间来表示为可逆实现。NAND 门 - 通用门。每个操作都可以使用多个 NAND 门来表示。可逆通用原语:我们通过构建 AND 门的可逆实现来获得 NAND 和 AND 门。布尔环:环就像一个具有 2 个运算的向量空间:加法和乘法。NAND 对于常规逻辑和可逆计算都是通用的。临时存储:存储和计算可以同时进行 - 这是该技术的一个新属性。每个可逆函数都可以表示为 theta 1、theta 2 和 theta 3 的组合。
在第 73 届 ECTC 上,计划在 36 个口头会议和 5 个互动演示会议上发表约 350 多篇技术论文,其中包括一个专门展示学生作者论文的互动演示会议。口头会议将展示关于晶圆级和扇出型封装、2.5D、3D 和异构集成、中介层、小芯片、高级基板、组装、材料和热模型、可靠性、恶劣条件下的封装、量子和 AI 应用的封装、互连、高速和高带宽封装、光子学、柔性和印刷电子等关键主题的精选论文。互动演示会议将以鼓励更深入的讨论和与作者互动的形式展示论文。来自二十多个国家的作者预计将在第 73 届 ECTC 上展示他们的作品,涵盖既定学科内的持续技术发展或我们行业感兴趣的新兴主题,例如增材制造、异构集成、柔性和可穿戴电子产品。
在第 73 届 ECTC 上,计划在 36 个口头会议和 5 个互动演示会议上发表约 350 多篇技术论文,其中包括一个专门展示学生作者论文的互动演示会议。口头会议将展示有关晶圆级和扇出型封装、2.5D、3D 和异构集成、中介层、小芯片、高级基板、组装、材料和热模型、可靠性、恶劣条件下的封装、量子和人工智能应用的封装、互连、高速和高带宽封装、光子学、柔性和印刷电子等关键主题的选定论文。互动演示会议将以鼓励更深入的讨论和与作者互动的形式展示论文。来自二十多个国家的作者预计将在第 73 届 ECTC 上展示他们的作品,涵盖现有学科内的持续技术发展或我们行业感兴趣的新兴主题,例如增材制造、异构集成、柔性和可穿戴电子产品。
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
电话:707-628-5107 电子邮件:jbahena@veeco.com 摘要 5G、物联网和其他全球技术趋势的需求,加上缩小工艺节点成本的增加,已导致向更集成的封装要求转变。扇出晶圆级封装、2.5D/3D IC 封装和异构集成等先进封装技术的出现,为更小尺寸、更高功能和带宽带来了潜力。为了实现这些技术,通常需要对器件晶圆进行背面处理或减薄。这就要求使用临时粘合材料将器件晶圆粘附到刚性载体晶圆上,以便在处理和加工过程中提供机械支撑。释放载体后,必须彻底清除器件晶圆上的临时粘合材料。许多此类粘合剂都暴露在高功率激光或高温下,这使得清除更具挑战性。临时键合材料去除的亚微米级颗粒清洁要求也达到了通常为前端处理保留的标准。这在 3D 工艺中尤其重要,例如混合键合,其中特征和间距尺寸接近 < 1 µm,清洁不充分会导致后续键合工艺失败。因此,必须仔细考虑所有处理步骤以满足严格的颗粒要求。这项工作研究了硅晶片上涂层和烘烤的临时键合材料的去除,重点是获得最佳颗粒结果的加工条件。通过进行试样级研究和测量表面特性,在烧杯级评估了几种化学物质。根据这些发现,使用可定制的单晶圆加工工具对 300 毫米晶圆进行了研究。关键词临时键合材料、湿法清洗、晶圆级封装、单晶圆加工。I.简介 虽然晶体管和节点缩放一直在不断进步,但相关的成本和复杂性要求采用其他途径来提高性能。最突出的是,先进封装中的 2.5D/3D 集成通过将不同尺寸和材料的不同组件集成到单个设备中,显示出巨大的前景 [1]。由于许多当前的集成工艺流程都需要对设备晶圆进行背面处理或减薄,因此使用临时键合和脱键合 (TBDB) 系统已被证明是必要的多种类型的集成技术已经得到开发,例如扇出型晶圆级封装 (FOWLP)、2.5D 中介层、3D 硅通孔 (TSV) 和堆叠封装 (PoP),具有高集成度、低功耗、小型化和高可靠性等预期优势 [1-3]。
摘要:如今,现代粒子物理实验的前端电子设备需要非常精确的时钟信号,以供读取链中的不同元素。时钟分配系统,模拟和数字转换器的时间,千兆串行链路是需要抖动非常低的时钟信号的组件的示例。拟议的项目旨在开发新的辐射耐受性相锁环(PLL)IP块,用于抖动低于10 ps的时钟信号生成,或者在PLL控制中添加数字路径的情况下更好。该块将在现代TSMC 65 nm技术中开发,以允许其在EIC项目中考虑的未来读数ASIC中,尤其是在我们团体目前正在开发的SALSA MPGD读数芯片中。PLL也可以是具有相调整功能的低功率独立时钟扇出ASIC的基础,这对于特定的EIC前端应用可能需要。该项目将涵盖IP块的仿真和设计及其原型制作和验证。
除了使用有机基板封装外,为了克服尺寸限制,人们还提出了新的封装技术并将其应用于半导体产品。晶圆级封装 (WLP) 和扇出型晶圆级封装 (FOWLP) 的开发是为了通过采用晶圆工艺而不是基于层压的工艺来进一步缩小封装尺寸。对于亚微米互连,还提出了通过 Si 中介层 (TSI) 进行互连,并用于高密度 2.5D/3D 封装,其中 Cu BEOL 互连可用作再分布层 (RDL)。热压键合 (TCB) 目前用于 2.5D/3D 组装,然而,混合键合将是进一步缩小芯片连接尺寸的关键推动因素,这将在后面讨论。英飞凌于 2006 年提出了一种称为嵌入式晶圆级球栅阵列 (eWLB) 的 FOWLP [1],该技术于 2009 年转让给 STATS ChipPAC 进行批量生产。台积电开发了另一种类型的 FOWLP,称为
鉴于其广泛的应用,包括在纤维剪接,捆绑式风扇中/扇出,模式耦合,编写光栅和光纤绘制的情况下,必须准确了解多核纤维(MCF)的内部核心分布(MCFS)。然而,由于测量精度决定了产品的性能,因此可用于精确测量纤维核心分布的有限方法的广泛使用受到限制。在这项研究中,提出了基于贝塞尔束照明的侧视图和非破坏性方案,用于测量七核纤维的内部核心分布。贝塞尔束在散射介质中提供较大的焦距,并在具有空间变化的折射率变化的外轴介质中传播时表现出独特的图案。结果表明,在贝塞尔梁的情况下,较长的焦距和独特的模式会影响图像对比,这与典型的高斯梁不同。此外,使用数字相关方法证明了基于贝塞尔束的七纤维核心分布的高精度测量。一种深度学习方法用于将测量精度提高到0.2°,精度为96.8%。所提出的侧视图基于贝塞尔束的方法具有处理更复杂的MCF和光子晶体纤维的潜力。