摘要神经纤维瘤病2型(NF2)是一种多重肿瘤综合征,是Merlin蛋白表达受损的表现,它对位于22号染色体上的NF2基因的扩散性引起的细胞增殖信号施加了抑制作用。约有一半的患者从父母那里继承了种系突变,据估计,近60%的从头NF2患者患有躯体麻醉。开发了检测NF2基因突变的技术方法,包括来自多个组织的深层测序,提高了马赛克NF2的诊断率。有了对遗传学和发病机理的了解,更新了NF2的诊断标准,以帮助在较早的阶段识别和诊断NF2。对与Merlin相互作用的细胞信号通路的理解导致了分子靶向疗法的发展。术语,几项翻译研究正在寻找靶向VEGF或VEGF受体的可能的治疗剂。bevacizumab是一种抗VEGF单克隆抗体,广泛用于许多临床试验,旨在听力改善或肿瘤体积控制。当前,一个随机,双 -
通过将惰性示踪粒子 (TP) 嵌入生长中的多细胞球体,可以测量癌细胞 (CC) 上的局部应力。为了使该技术有效,必须阐明 TP 动力学对 CC 的未知影响,以确保 TP 不会大幅改变 CC 上的局部应力。我们利用理论和模拟表明,由 CC 增殖和凋亡产生的自生 (主动) 力使 TP 的动力学远离平衡。在小于 CC 分裂时间的时间尺度上,TP 表现出亚扩散动力学(均方位移 ∆ TP ( t ) ∼ t β TP,β TP < 1),类似于玻璃形成系统。令人惊讶的是,在长期极限下,由于长时间持续定向运动,TP 的运动具有超扩散性(∆ TP ( t ) ∼ t α TP,其中 α TP > 2)。相比之下,CC 的增殖使其运动随机化,导致超扩散行为,α CC 超过 1。最重要的是,α CC 不会受到 TP 的显著影响。我们的预测可以使用体外成像方法来测试,其中可以跟踪 TP 和 CC 的运动。
摘要背景:复发性扩散性去极化 (SD) 发生在卒中和创伤性脑损伤中,被认为是损伤进展的标志。活体大脑中与 SD 相关的条件很复杂,这促使研究人员研究活体大脑切片制剂中的 SD,但实验室之间的方法差异使综合数据解释变得复杂。在这里,我们对活体大脑切片中 SD 的演变进行了比较评估,这些切片响应选定的 SD 触发器并在各种培养基中,在其他标准化实验条件下进行。方法:制备大鼠活体冠状脑切片 (350 μm) (n = 51)。使用低渗培养基 (Na + 含量从 130 降至 60 mM,HM) 或氧-葡萄糖剥夺 (OGD) 来引起渗透性或缺血性挑战。用人工脑脊液 (aCSF) 灌注的脑切片作为对照。在对照条件下通过压力注射 KCl 或电刺激诱发 SD。通过皮层内玻璃毛细管电极记录局部场电位 (LFP),或在白光照射下进行内在光信号成像以表征 SD。使用 TTC 和苏木精-伊红染色评估组织损伤。结果:严重渗透应激或 OGD 会引发自发性 SD。与 aCSF 中触发的 SD 相反,这些自发去极化的特点是复极不完全且持续时间延长。此外,HM 或 OGD 下的皮质 SD 会传播到整个皮质,偶尔会侵入纹状体,而 aCSF 中的 SD 在停止之前覆盖的皮质区域要小得多,并且从未扩散到纹状体。HM 中的 SD 显示出最大的幅度和最快的传播速度。最后,HM 中的自发性 SD 以及尤其是在 OGD 下的自发性 SD 之后会出现组织损伤。结论:虽然 Na + /K + ATP 酶的失效被认为会损害 OGD 相关 SD 的组织恢复,但组织肿胀相关的过度兴奋和星形胶质细胞缓冲能力的耗尽被认为会促进渗透应激下的 SD 进化。与 OGD 相比,在低渗透条件下传播的 SD 不是终点,但它与不可逆的组织损伤有关。需要进一步研究以了解 HM 中自发发生的 SD 进化与 OGD 下的 SD 进化之间的机制相似性或差异性。关键词:脑切片、脑缺血、扩散性去极化、渗透应激、氧葡萄糖剥夺
摘要。由于高肿胀和保留能力的优势,膨润土通常被用作地热结构应用的热背填充材料之一。然而,纯膨润土的低热扩散率表明,从地热系统到周围地面的热传导不良,这导致地热系统的热不稳定性。砂比膨润土具有很高的热扩散性,而水的保留能力低。这项研究介绍了实验室研究的结果,并加入沙子,膨润土的热扩散率提高。在实验研究中,与膨润土混合了20-80%的砂含量。此外,在不同的干密度(1.0-1.4 mg/m 3)和水分含量(0-53%)下,使用瞬态热流探针方法在实验室中测试了膨润土,沙子和膨润土 - 盐酸盐和混合物。研究了体积水含量(干密度和水分含量的结合作用)和砂含量对测试样品的热扩散率的影响。实验结果与先前开发的经验模型进行了比较,这些模型基于土壤的体积水分含量和质地。此外,根据Spearman相关系数在各种岩土技术参数和工程背部填充材料的热扩散率之间讨论了侵蚀参数。从结果开始,已经观察到,干燥密度,土壤纹理和饱和度是最有影响的参数,它是嵌入带有工程后的后填充物质的热源附近的热水传递。
下一代直线对撞机应具有极小的发射度,以实现足够高的亮度。由于相互作用点处的光束尺寸非常小,高度约为十纳米,这些机器对地面运动非常敏感,从而导致不相关的机器组件紊乱。精确对准机器组件对于防止发射度稀释至关重要。1996 年,KEK 开始对电子/正电子直线对撞机的 C 波段(5712 MHz)射频系统的硬件研发。相关进展已在国际会议上报告 [1]。在本文中,我们将报告加速结构的大梁和支撑大梁的主动动子的设计。扩散性地面运动会破坏加速器元件的对准。为了补偿缓慢的地面运动,采用新理念开发了一种主动支撑动子。我们正在对动子进行长期使用质量测试。我们的新型移动器由空气弹簧和多层橡胶轴承 (MLRB) 组成,如图 2 所示。与机械千斤顶相比,空气弹簧的控制更平稳、更精细。我们使用 MLRB 来防止地震引起的支撑台快速弹出运动。移动器的详细设计和特性通过 LON 控制系统展示 [2, 3]。
摘要。如果未解决的物理学的模型参数化(例如上海混合过程的种类)将在对气候重要的时间和空间范围内保持范围很大,则必须强烈基于物理。的观察,理论和海洋垂直混合模型。确定了两种不同的机制:在各种表面强迫条件下(稳定,不稳定和风驱动),在表面附近的边界层中混合海洋混合,以及由于内部波,剪切不稳定性和双重扩散而导致海洋内部混合(由不同的热和盐分子扩散速率引起)。通常应用于上大洋的混合方案不包含一些潜在的边界层物理。因此,开发了海洋边界层混合的新参数化,以适应某些物理学。它包括一个用于确定边界层深度h的方案,其中对散装理查森数字的垂直剪切的湍流有参数为参数。给出了整个边界层中扩散性和非局部传输的表达式。扩散率是与表面层中湍流的模拟理论一致的,并且受其及其垂直梯度均与H处的内部值相匹配的条件。然后对此非局部“ k剖面参数化”(kpp)进行验证,并将其与替代方案(包括其大气相对)进行比较。它最重要的功能是
氮化硅陶瓷底物在活性金属悬挂(AMB)底物中起着关键作用,用于电动模块,其应用包括电动汽车(EV)和混合电动汽车(HEV)电动机控制的逆变器。这些基材在功率半导体模块操作过程中具有散热的函数。同时,底物越细,其热扩散率越高,功率半导体模块的操作效率越大。增加的电动汽车和HEV的采用量正在推动针对高功率设计的功率半导体模块的更多使用,从而最终导致对较薄的底物的需求不断增长,这些底物具有很大的热耗散性能。然而,缺乏评估比0.5毫米的底物热扩散性的确定方法,这在确保测量结果的一致性方面引起了挑战。这项联合研究邀请AIST及其对评估方法的广泛了解以及NGK及其先进的陶瓷底物技术,以收集数据以量化初步过程,这会影响底物热扩散率的测量。这将使我们能够验证评估高性能薄底物的方法,这些底物甚至比0.5毫米薄,例如尚未根据现有日本工业标准(JIS)定义的方法,从而有助于高度准确的测量数据和评估方法的未来标准化。
目标:与年龄相关的认知变化可能受到大脑维护(BM)的影响,这是指随时间到时间的相对缺席神经资源或神经病理学变化的变化以及认知储备(CR),这些储量通过了大脑过程,可以使人们的行为表现更好地表现,从而使人们的行为表现更好地表现出了生命式的脑部脑部变化程度。本研究评估了年龄,BM和CR对2次访问(相距5年)的纵向变化的影响,具有3种捕获大多数与年龄相关的可变性的认知能力。方法:参与者包括254名20-80岁的健康成年人。使用全脑皮质厚度和白质平均扩散率在两次访问时估计电位BM。教育和情报商(通过美国国家成人阅读测试估算的智商)被测试为3种认知能力认知变化的调节因素。结果:与BM一致(考虑到年龄,性别和基线表现之后),平均扩散性和皮质厚度的延长的个体差异与3个腹部的相对保留独立相关。与CR(在考虑年龄,性别,基线表现和结构性大脑变化之后)一致 - 智商(β= 0.387,p = .002)的降低与智商下降相关,而不是教育,并且与速度降低有关(β= 0.237,p = 0.237,p = .039)。讨论:这些结果表明,CR和BM都可以缓和健康衰老的认知变化,并且两种机制可以为保留的认知做出不同的贡献。
细胞外矩阵(ECM)是一个大分子网络,具有两种形式:神经神经元网(PNN)和一个弥漫性ECM(DECM) - 均影响大脑的影响,突触形成,神经塑性,神经塑性,CN,CNS损伤和进步神经变性性疾病。ECM重塑会影响外鼻外传播,这是由神经活性物质在细胞外空间(ECS)中的扩散介导的。在这项研究中,我们分析了PNN和DECM影响脑部扩散性的干扰。在口服4-甲基木纤维酮(4-mu)的大鼠(HA)合成抑制剂4-甲基木纤维酮(4-mu)后,我们发现PNNS,HA,HA,软骨蛋白硫酸软骨蛋白聚糖蛋白酶和闪光酸性酸性蛋白质的染色下调。4个月和6个月后,这些变化得到了增强,并且在正常饮食后是可逆的。形态分析进一步表明星形胶质细胞的萎缩。使用实时离子噬方法的ECM失调导致体感皮质中的ECS体积分数α增加35%,从对照大鼠的α= 0.20到4-MU饮食后的α= 0.27。扩散加权的磁共振成像显示,在皮质,海马,丘脑,pallidum和脊髓中,平均扩散率和分数各向异性(FA)的降低。这项研究表明,由于PNN和DECM的调节,ECS体积的增加,FA的损失以及星形胶质细胞的变化可能会影响外突触外传播,细胞间通信和神经可塑性。
1美国田纳西州纳什维尔市范德比尔特大学医学中心放射与放射科学系2美国田纳西州纳什维尔大学医学中心,范德比尔特大学成像科学研究所,美国田纳西州纳什维尔市3卡迪夫大学脑研究中心,加迪夫大学大脑研究中心,加迪夫大学,卡迪夫大学,王后科学,加里夫大学。工程,范德比尔特大学,田纳西州纳什维尔市,美国6电气工程和计算机工程,范德比尔特大学,田纳西州纳什维尔,美国田纳西州 *中枢神经系统的组织微观结构。大多数实验设计采样了大量扩散加权方向以计算球形平均信号,但是,对这些方向的子集进行采样可能会提高扫描效率并启用扫描时间减少,或者可以减少采样更多扩散权重。在这里,我们旨在确定稳健测量球形平均信号所需的最小梯度方向数。我们使用计算机模拟来表征测得的球形平均信号的变化,这是梯度方向数量的函数,同时还研究了扩散加权(B值),信号 - 噪声比率(SNR),可用硬件和球形平均拟合策略的影响。然后,我们利用大脑和脊髓中的经验获得的数据来验证模拟,显示实验结果与模拟良好一致。我们通过提供直观的查找表来概括这些结果,以促进确定可靠的球形均值测量所需的最小数量的采样方向,并根据SNR和实验条件提供建议。关键字:球形平均信号,最佳采样,音量分数,扩散性简介