磁盘扩散(Eucast标准化磁盘扩散法)介质:挑剔的Anaerobe琼脂 + 5%去启动的马血(FAA-HB)。应在接种之前将板干燥(在20-25°C过夜或在35°C下,将盖子移除15分钟)。接种物:McFarland 1.0孵育:厌氧环境,35-37ºC,18±2H读数:除非iSe陈述,否则读取区域边缘是读取区域的边缘,显示了从板的前面呈现出来的镜头,盖子已移开并带有反射的光线。有关更多信息,请参见下图和厌氧菌细菌磁盘扩散的Eucast阅读指南。质量控制:Bacteroides Fragilis ATCC 25285和梭状芽胞杆菌灌注量ATCC 13124。以控制β-内酰胺抑制剂组合磁盘的抑制剂成分,请参见Eucast QC表。灌注梭状芽胞杆菌DSM 25589与甲硝唑5 µg盘可监测厌氧气氛。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
抗生素敏感性测试是一种测试细菌对抗生素反应的方法。这项研究旨在确定抗生素针对微生物活性的有效性。使用两种方法,即扩散方法和稀释方法进行灵敏度测试。使用纸盘(Kirby-bauer)对大肠杆菌和Shigella Sonnei细菌与阿莫西林,新霉素和磺酰胺抗生素进行扩散法进行了扩散法。所需的数据是抑制区的直径。结果表明,大肠杆菌对阿莫西林敏感,但对磺酰胺和新霉素有抵抗力。同时,Shigella Sonnei对阿莫西林,新霉素和磺胺酰胺具有抵抗力。此外,使用液体稀释法测试了稀释法以测试阿莫西林对大肠杆菌细菌的效力。所需的数据是带有液体培养基的测试管,没有显示浊度。结果表明,阿莫西林对大肠杆菌的最小抑制浓度为0.25%。基于使用扩散和稀释方法的抗生素敏感性测试的结果,可以得出结论,阿莫西林对大肠杆菌细菌具有很高的有效性,最小抑制浓度为0.25%,而志贺氏菌对抗生素的耐药性具有抗性。
研究了使用两种方法合成的方解石样品的内部结晶度:溶液沉淀法和碳酸铵扩散法。扫描电子显微镜 (SEM) 分析表明,使用这两种方法沉淀的方解石产品具有明确的菱面体形状,与矿物的自形晶体习性一致。使用布拉格相干衍射成像 (BCDI) 表征这些方解石晶体的内部结构,以确定 3D 电子密度和原子位移场。使用碳酸铵扩散法合成的晶体的 BCDI 重建具有预期的自形形状,具有内部应变场和少量内部缺陷。相反,通过溶液沉淀合成的晶体具有非常复杂的外部形状和有缺陷的内部结构,呈现出零电子密度区域和明显的位移场分布。这些异质性被解释为由非经典结晶机制产生的多个结晶域,其中较小的纳米颗粒聚结成最终的自形颗粒。SEM、X 射线衍射 (XRD) 和 BCDI 的结合使用允许在结构上区分用不同方法生长的方解石晶体,为了解晶粒边界和内部缺陷如何改变方解石反应性提供了新的机会。
这项工作旨在评估盐生植物 Sesuvium portulacastrum (L.) 对某些植物和人类病原体的抗菌潜力。S. portulacastrum 的植物部分是从印度安得拉邦卡基纳达附近 Coringa 保护森林的红树林栖息地收集的。使用索氏提取装置,将植物部分干燥并用己烷、氯仿、甲醇和水成功获得提取物。琼脂孔扩散法已用于确定植物提取物对某些革兰氏阳性菌(枯草芽孢杆菌、巨大芽孢杆菌和嗜酸乳杆菌)、革兰氏阴性菌(大肠杆菌、产气肠杆菌、阴沟肠杆菌和肺炎克雷伯菌)和真菌种类(白色念珠菌、毛霉、立枯丝核菌、匍匐根霉和酿酒酵母)的抗菌活性。与甲醇和水提取物相比,己烷、氯仿提取物表现出最低的抗菌活性。S. portulacastrum 的水提取物对所有细菌和真菌菌株表现出明显的抗菌活性。这表明这种盐生植物具有可以对抗微生物的抗菌化合物,它们可用于治疗由病原微生物引起的传染病。关键词:盐生植物、抗菌活性、琼脂井扩散法、Sesuvium portulacastrum。戈达瓦里河口。
另一侧的组合可以增加其抗菌活性(Han等人2017; Shao等。2015)。SA和CMC组合的抗菌活性基于不同的参数,例如使用的量,矩阵中的其他成分,培养基的pH和孵育温度(Abdellatif Soliman等人2021; Han等。2017)。因此,在这项研究中,制备的水凝胶基质中抗菌活性的存在基本上归因于其内在组成。迄今为止,抗菌活性通常由琼脂盘扩散法确定(Han等人2017; Kamoun等。2015; Kumar等。2019)。尽管如此,由于组件相互作用及其
摘要 :由于相关优势,合成氧化钴纳米粒子 (Co3O4-NPs) 的绿色技术如今比其他方法更受青睐。本研究中的 Co3O4-NPs 是利用菠萝废皮和氯化钴 (Ⅱ) 作为钴源生成的。使用傅里叶变换光谱 (FTIR)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、紫外分光光度计等几种方法对生成的 NPs 进行分析。已确定生成的 Co3O4-NPs 对抗革兰氏阳性菌具有抗菌性能,并通过琼脂孔扩散法发现其对枯草芽孢杆菌 (B.subtilis) 具有活性。这种新创建的绿色合成技术对环境无害,可以取代 Co NPs 的物理和化学过程。
摘要:本研究计划利用印度楝花提取物生物合成 ZnONPs,以预测其抗菌和抗真菌活性。用紫外-可见光谱 (UV-vis)、X 射线衍射仪 (XRD)、傅里叶变换红外光谱 (FT-IR)、扫描电子显微镜 (SEM) 和 EDAX 对用印度楝花提取物合成的 ZnONPs 进行了表征。本研究还涵盖了光催化降解活性 (UV-vis)。XRD 研究显示了 ZnONPs 的晶体结构。SEM 研究给出了粒子聚集的概念。使用圆盘扩散法,在含有印度楝花提取物的 ZnONPs 的抗菌和抗真菌活性中获得了最大抑制区。关键词:ZnO 纳米粒子 (NPs)、印度楝花提取物 (NFE)、光催化降解活性、抗菌和抗真菌活性
* 通讯作者:moumahuya1@yahoo.com 摘要 本研究从药用植物长春花 (长春花) 中分离细菌和真菌内生菌。共获得 13 种内生细菌分离株。筛选细菌分离株以产生植物生长促进剂(吲哚乙酸、固氮和磷酸盐溶解)以及针对强效人类病原体的抗菌剂。在这些分离株中,11 种细菌分离株产生吲哚-3-乙酸(浓度范围为 11-74 µg/ml),3 种分离株能够固氮,3 种分离株可在体外溶解不溶性磷酸三钙。在初步筛选中,5 种内生分离株的提取物通过琼脂孔扩散法体外测定似乎对 3 种病原体(大肠杆菌、葡萄球菌属、弧菌属)具有抗菌活性。
简介:牙髓疗法旨在消除根管系统中的微生物感染并防止再感染,从而确保根尖的组织愈合。持续的细菌污染,特别是金黄色葡萄球菌和链球菌突变,是牙髓治疗衰竭的主要原因。由于根管解剖结构的复杂性,常规的机械和化学消毒方法可能不足以消除细菌。具有抗菌特性的牙髓密封剂在增强消毒和防止细菌再殖民化方面起着至关重要的作用。This study aimed to evaluate and compare the antimicrobial efficacy of three commonly used endodontic sealers, AH Plus (Dentsply Maillefer, Ballaigues, Switzerland), Zinc Oxide Eugenol (ZOE; Pyrax Cavibond, Roorkee, India), and Tubli Seal (SybronEndo, Glendora, CA, USA), against Staphylococcus aureus and使用琼脂扩散法链球菌突变。