摘要 — 提出了一种基于欺骗表面等离子体极化激元 (SSPP) 的全空间高扫描速率漏波天线 (LWA),其由 SSPP 设计和矩形周期金属贴片组成。电磁 (EM) 波沿 SSPP 传播并耦合到金属贴片以产生快速辐射波,可实现从后到前频率的波束扫描性能。此外,通过色散关系、空间谐波和电场分布解释了设计的辐射机制。所提出的 LWA 基于 −1 阶空间谐波辐射能量,通过控制贴片的周期可实现全空间和高波束扫描速率性能。仿真结果表明,LWA 在 12.9 至 16.5 GHz 频带内实现从 − 90° 到 90° 的全空间波束扫描,同时天线还保持了 7.35°/% 的高扫描速率。
评估电极反应的过程(吸附或扩散控制)。使用CV技术对FEOMCPE的GU和DA的扫描速率效应进行了质疑。图6a以50 mv/s的扫描速率在FeOMCPE的CV处登出GU。在GU中,随着扫描速率的增加,峰值电流伪装增加,潜在的可忽略不计向正面的转移。电势移位主要是由于电极表面上吸附层的发展。扫描速率与峰电势之间绘制的图(图6B)和IPA = 0.5606+1.185ph(R 2 = 0.9804)是线性回归方程。因此,该结果表明GU的电子传递过程受吸附控制,并且对数扫描速率与对数峰值电流的图表如图6C所示。结果具有良好的线性,相关系数值(R 2),被发现为0.999。
参数 ATMS Bowie 覆盖范围 (km) 30 25 HPBW 2.2 1.7 总扫描时间 (s) 2.67 2.52 RPM 22.47 23.97 恒定扫描速率 (°/秒) 134.83 143.88 角度测量范围 (°) 106.56 103.75 地球视场 沿轨道样本/IFOV 1.6 1-1.5 跨轨道样本/IFOV 1.98 1-1.5 样本 96 122 测量时间 (s) 0.79 0.72 积分时间 (ms) 8.23 5.91 注意:以上假设 ATMS 具有恒定扫描速率。可变扫描速率将 ATMS 积分时间增加到 18 ms。
解决方案是通过使用Setaram的量热计(包括微钙化器)使用大量的样品和非常低的扫描速率。这些量热计的探测器完全围绕样品。小钙和微钙化检测器如图7所示。这些探测器设计为保持1 cm3的样品体积。由于高量热灵敏度和稳定性,可以使用低至0.001°C/mn或0.6°C/小时的扫描速率!以下示例是对使用微层面的聚合物珠封装在聚合物珠中的聚烯烃的均匀混合物的分析。样品质量为390 mg,对应于约10个珠子。将样品从-20°C加热到50°C,然后在1°C/min中从50°C冷却至-20°C,然后使用0.04°C/min的速率再次运行样品,以测量扫描速率对滞后率的影响(图8)。
责任实体应保留数据或证据以表明当前年度及前三个日历年的合规情况,除非其合规执行机构指示作为调查的一部分保留更长时间的特定证据。计算监管储备共享组报告 Ace 或报告 ACE、CPS1 和 BAAL 所需的数据应以数字格式保留,扫描速率与计算当前年度及前三个日历年的报告 ACE 的扫描速率相同。
f g -1)和pedotoh/pei(142.3 f g -1)的扫描速率为10 mV s -1。随后,我们制造了
COO 2,COO 2(250 O C),COO 2(300 O C)纳米结构材料,扫描速率(10)MVS -1为(223,
该技术的关键进展是超高扫描速率,该扫描速率可以高达10-10 6 k/s,而超高灵敏度通常高于热容量分辨率,通常优于1 NJ/K。纳米级别学在材料科学中引起了很多关注,在材料科学中,它被应用于对快速相变的定量分析,尤其是在快速冷却方面。FSC应用的另一个新兴领域是物理化学,重点是热不稳化合物的热物理性质。诸如融合温度,融合峰,升华和蒸发压力和此类分子焓的数量已获得。本讲座不久将回顾FSC的发展,并总结了其应用于从聚合物(包括蛋白质)到药物的各种材料的应用。
摘要:合成了氧化钴(CO 3 O 4)装饰的碳化硅(SIC)纳米树阵列(称为CO 3 O 4 /sIC NTA)电极,并研究了用于微型 - 苏格体配件的应用。首先,由镍(Ni)催化化学蒸气沉积(CVD)方法制备了良好的SIC纳米线(NWS),然后由Co 3 O 4的薄层和层次CO 3 O 4 nano-nano-luper-Clusters组成,分别是在侧面和最高的sic nw上制造的。SIC NWS上Co 3 O 4的沉积使电极/水溶液界面的电荷转移由于其在CO 3 O 4装饰后极为亲水的表面特性而在电极/水性电解质界面上受益。此外,CO 3 O 4 /SIC NTA电极由于其稳固的结构而沿SIC纳米线的长度提供了方向的电荷传输路线。通过使用CO 3 O 4 /SIC NTA电极进行微轴心电容器的应用,以10 mV s-1扫描速率以10 mV s-1扫描速率以循环伏安法测量获得的面积电容达到845 mf cm-2。最后,还通过循环伏安法的循环测试评估了电容耐用性,以高扫描速率为150 mV s -1,对于2000个循环,表现出极好的稳定性。
扫描率。循环伏安法曲线将对称形状从0.005 V•s -1至0.1 V•S -1保持,表明电极材料的放大能力。由于法拉第反应时间不足以高扫描速率,特定电容随扫描速率的增加而降低。图5C显示了在不同电流密度下TN-MO-S的充电偏差曲线。几乎对称的三角形轮廓表现出电极的电容和可逆特征。