奥卡马克是目前最有前途的商业化聚变反应堆配置,但与仿星器相反,它们很容易发生中断。由于它们也是非常复杂的设备,因此中断取决于许多影响以及它们之间的非线性相互作用。脉冲托卡马克实验包括数百万安培数量级的电流放电。这些放电的正常演变可能会被各种类型的不稳定性 1 突然打断。与过度辐射(从可见光到 X 射线光谱区域)、过高的等离子体密度或异常电流分布有关的不稳定性尤为常见和危险。中断发生在两个阶段,即热猝灭和电流猝灭。在热猝灭期间,等离子体的大部分内部能量会在 1 毫秒数量级的时间尺度上损失。热猝灭之后立即是电流猝灭,在此期间等离子体电流会在几毫秒到几百毫秒的时间间隔内熄灭,在当今的托卡马克中这一点尤为明显。中断的前兆通常表现为几个诊断信号异常,例如电子温度异常(图1)。然而,这些所谓的前兆信号也可能出现在非中断等离子体中,这使得中断预测成为一个复杂的多目标问题。由于缓解中断需要立即终止放电,因此误报会浪费大量的资源,而且有损坏设备的风险。因此,需要将误报和漏报保持在最低限度。准确预测中断对于下一代托卡马克来说将更加重要,因为它们将使用面向等离子体的金属部件。金属有几个优点。首先,它可以承受负载且腐蚀程度可接受,这意味着它对面向等离子体的部件的寿命以及托卡马克的效率的影响较小。其次,等离子体燃料的滞留率相对较低。滞留率高,即放射性燃料在壁内积聚,是一种安全威胁