摘要:经典补体途径被抗原结合的IgG抗体激活。单体IgG必须寡聚以通过六聚体C1Q复合物激活补体,而IgG的六聚化突变体似乎是有希望的治疗候选者。然而,结构数据表明,没有必要结合所有六个C1Q臂以启动补体,从而揭示了C1和六聚体IgG复合物之间的对称不匹配,这尚未得到充分解释。在这里,我们使用DNA纳米技术来生成特定的纳米结构以模板抗原,从而控制IgG价值。这些DNA纳米含量的IgG复合物可以激活对细胞模拟脂质膜的补体,这使我们能够确定IgG价值对补体激活的影响,而无需突变抗体。我们使用生物物理测定法与3D冷冻电子断层扫描一起研究了这一点。我们的数据表明,C1复合物的补体C4裂解与抗原数量成正比。增加的IgG价值也转化为更好的终端途径激活和膜攻击复合物的形成。一起,这些数据提供了有关纳米图案抗原抗体复合物如何影响C1复合物激活的见解,并提出了通过抗体工程调节补体激活的途径。此外,据我们所知,这是DNA纳米技术首次用于研究补体系统的激活。
在整个生命历史中,进化依赖于随机突变和自然选择的基本过程,从而产生了具有显著功能的多种生物分子。定向进化领域长期以来一直试图利用进化的力量来设计新的生物分子功能 1、2。然而,典型的细菌、酵母或人类细胞中 DNA 复制的突变率为每个碱基 10 −10 –10 −9 个替换 3 ,或者说,平均长度(~1 kb)的基因内的突变大约每 100 万到 1000 万次细胞分裂就会发生一次。在如此低的突变率下,即使是简单的单个突变也很难采样到,而这些突变可以使目标基因(GOI)及其编码的 RNA 或蛋白质朝着所需功能的方向发展。定向进化传统上转向体外多样性生成,其中可以使用易错 PCR 或随机寡核苷酸池对 GOI 施加高突变率 2 。然后将得到的GOI变体文库转化为细胞,在细胞中以RNA和蛋白质的形式表达,并进行选择或筛选。富集的GOI变体作为下一轮体外多样化、转化和选择或筛选的模板,推进进化周期(图1a)。尽管定向进化彻底改变了生物分子工程——特别是荧光蛋白、酶和抗体工程2、4——但它对手动分阶段进化步骤的传统依赖限制了进化搜索的深度和规模。由于需要体外GOI多样化,经典的定向进化放弃了
摘要:免疫检查点抑制剂已显著改变了多种癌症的治疗前景,但对许多癌症患者来说还不够。T 细胞共刺激受体已成为下一代癌症免疫疗法的靶点,但尚未达到足够的临床疗效。CD137 (TNFRSF9, 4-1BB) 提供共刺激信号并激活 CD8 + T 细胞的细胞毒性作用并有助于形成记忆 T 细胞。此外,CD137 信号传导可以激活 NK 细胞和树突状细胞,从而进一步支持细胞毒性 T 细胞活化。针对 CD137 的激动剂单克隆抗体 urelumab 提供了有希望的临床疗效信号,但反应是在最大耐受剂量以上实现的。Utomilumab 是另一种针对 CD137 的 CD137 单克隆抗体,但效力不如 urelumab。抗体工程技术的最新进展使得能够减轻阻碍 urelumab 临床应用的肝毒性,并使其保持与 urelumab 相似的效力。目前正在临床试验中的下一代 CD137 靶向分子支持患者样本中的 T 细胞和 NK 细胞扩增。人们一直在寻求将 CD137 靶向分子与检查点抑制剂或 ADCC 增强单克隆抗体结合使用,以提高临床安全性和疗效。需要对患者样本进行进一步研究,以提供见解,了解未来涉及 CD137 靶向剂的组合策略的补偿途径,以优化和维持肿瘤中的 T 细胞活化状态。
摘要尽管医疗保健方面取得了进步,但癌症仍然对人类健康的主要威胁。抗体 - 药物结合物(ADC)是一种有希望的靶向疗法,可以克服对正常组织的不良副作用。在这一领域,当前的挑战是获得偶联物的均匀制剂,其中定义数量的药物与特定的抗体位点结合。基于网站的半胱氨酸共轭通常用于获得同质ADC,但由于需要广泛的抗体工程来确定最佳结合位点和还原 - 氧化方案是每种抗体的特异性,因此这是一种耗时且昂贵的方法。因此,需要对已经批准的抗体疗法提供同质性和直接适用性的ADC平台。在这里,我们用曲妥珠单抗作为模型来描述一种从任何人类免疫球蛋白1(IgG 1)中得出2(IgG 1)的药物与抗体比为2的均质ADC的新方法。该方法基于两个重组HEK293独立培养物中重链(HC)和轻链(LC)的产生,因此未改变原始的氨基酸序列。分离的LC有效地连接到单个药物链链(VCMMAE)构建体并混合到分离的HC二聚体,以获得正确折叠的ADC。根据ADC同质性(HIC-HPLC,MS),纯度(SEC-HPLC),孤立的抗原识别(ELISA)和生物学活性(HER2阳性乳腺癌细胞细胞毒性测定)对工作的相关性进行了验证。
已经开发了创造性的方法来实现此属性。[1,2]在许多早期的概念验证研究中,BSAB是通过使用双功能交联试剂对两种不同的IgG或Fab进行化学交联产生的,这些试剂与抗体的硫醇和原发胺群特异性反应。[3,4]尽管以这种方式制备的几个BSAB已促进了临床试验,但[5-7]当前开发的绝大多数BSAB是通过重组抗体工程产生的。超过100种不同格式的多特异性抗体(MSAB)是基于免疫球蛋白G(IgG)或其成分进行了设计的(在参考文献[1]),有些包含FC,而另一些则没有。众所周知的无FC格式示例是串联单链可变片段(SCFV)[8]和串联纳米词。[9]中,由串联抗CD19和抗CD3 SCFV(blinatumomomab)组成的双特异性T细胞Endager(咬)是第一个FDA认可的BSAB,用于治疗急性淋巴细胞性白血病。[10,11]含有FC的天然IgG是对称的。向IgG引入双特异性或不对称性能,已经开发了各种方法来有利于异二聚体重型链配对。一些突出的例子是旋钮孔,[12]基于结构性的诱变,[13]和骨膜转向[14],这些诱变有利于异二聚体或脱离FC的同构化。此外,将旋钮孔和附加IgG的两个臂之一与另一个SCFV或FAB相加的一个允许组装Tristexific抗体。[15]
墨尔本(澳大利亚)和印第安纳波利斯(美国) - 2025年1月13日。Telix Pharmaceuticals Limited (ASX: TLX, Nasdaq: TLX, Telix, the Company) today announces it has entered into an asset purchase agreement with antibody engineering company ImaginAb, Inc. (ImaginAb) to acquire a pipeline of next-generation therapeutic candidates, proprietary novel biologics technology platform, and a protein engineering and discovery research facility to enhance existing innovation功能。此交易增加了针对包括DLL3 1和整合素αVβ62的高价值靶标的早期药物候选物的管道,以及发现阶段的其他几个新靶标。这些下一代候选药物与Telix的Therapeutics管道协同拟合,从而扩展到未满足临床需求的未来治疗区域。获得的知识产权利用了小型工程抗体格式,这些抗体格式可以实现高度特异性的癌症靶向,并结合了快速肿瘤的吸收和血液清除。这项技术有可能对具有广泛的放射性同位素的成像和治疗肿瘤具有高效,并且具有特别感兴趣的α发射器。该交易还包括加利福尼亚州的最先进的研究机构,由一个有才华的发现,蛋白质工程和放射性药物开发专家组成。一起,这些资产将为Telix提供抗体工程和临床前开发的进一步内部功能,以及一个新型的生物制剂平台,以创建下一代Telix Precision Medicine和Therapeutic产品,超出了当前的临床阶段管道。Telix Therapeutics首席执行官Richard Valeix说:“专有药物发现平台的结合,有前途的Theranostic资产的管道以及有才华的主题专家团队将增强Telix的研究和创新能力,现在和未来。这次收购将使Telix能够通过最先进的放射治疗技术探索新的疾病领域。”