百香果果实原产于南美,由于其味道和营养价值的增强而获得了广泛的认可。此外,由于国际市场中果实的热情增加,在非洲,亚洲和澳大利亚等国家中,百香果养殖正在逐渐增加。例如,在生产水平上,巴西是主导的。在新兴一级,肯尼亚和印度即将到来[1]。过去,百香果也曾在传统医学中用于治疗失眠和焦虑,这就是为什么它具有如此多的应用[2]。它是生物活性化合物的重要来源,它可以治愈某些疾病,例如炎症,癌症和失眠[3]。然而,最近的研究旨在发展其提高的园艺品质,包括产量,抗病性和气候适应能力[4,5]。本评论的重点是关于百香果的健康影响和农业进步的科学文献的营养概况和现有的进步。
二核苷酸糖基水解酶 (NADase) 可产生多种核苷酸衍生的信号分子 ( 5 , 6 )。这些衍生物被进一步加工成短寿命产物,根据其结构,这些产物可作为选择性配体,驱动由脂肪酶样蛋白 EDS1 (增强疾病易感性 1) 和 SAG101 (衰老相关基因 101) 或 PAD4 (植物抗毒素缺乏 4) ( 5 , 6 ) 组成的预先形成的蛋白质异二聚体发生特定重排。然后,两种类型的 EDS1 异二聚体会选择性地募集所谓的“辅助 NLR”,在 EDS1-PAD4 的情况下称为 ADR1(激活抗病性 1),在 EDS1-SAG101 的情况下称为 NRG1(氮必需基因 1)。然后 NRG1 和 ADR1 寡聚化并形成膜定位钙通道,从而激活下游免疫反应,特别是对于 NRG1 而言,导致受感染植物细胞死亡(7,8)。
拟议的短期课程旨在全面了解有益植物微生物组在可持续农业中的作用、重要性和技术。植物中的微生物群落促进植物生长、养分吸收、抗逆性和抗病性。这个结构良好的短期课程旨在传播有关有益植物微生物组的最新知识。这也将为参与者提供机会体验 VNMKV 最先进的设施,通过实践培训利用 pp - 微生物组可持续农业实践。有益的微生物组介导的植物保健将解决植物有益微生物的分离、鉴定、基于多组学的表征以及不同配方在可持续农业中的应用。短期课程还激发他们参与可持续研究发展活动,以释放微生物组在农业中的潜力。
在现代农业中,小型反刍动物生产的创新方法是提高生产力和可持续性的关键。范式从传统的饲养系统转变为精确耕作。精确牲畜养殖(PLF)利用数字工具,例如自动进食,健康监测传感器和数据分析,优化资源使用,增强动物福利并减少废物。这些进步在全球范围内越来越受到关注,尤其是在具有发达的牲畜行业的国家,并有望支持发展中心的可持续增长。基因组选择通过鉴定抗病性和高生育能力等性状来进一步加速繁殖,从而有助于创造适应气候挑战的弹性品种。,PLF和基因组工具一起为小型反刍动物生产提供了一种变革性的方法,促进了生产力,环境可持续性和粮食安全。
摘要益生菌和益生元的利用具有提高水产养殖的可持续性和生产力的潜力。活的微生物称为益生菌,直接通过增强消化,免疫力和肠道健康而受益。益生元是不可消化的食品成分,专门促进了良好的肠道菌群的形成。在本文中检查了益生元和益生菌对水产养殖物种有益于水产养殖物种的方法。共同支持增强水质,抗病性,饲料效率和生长性能。益生菌可以通过生产维生素,饮食中化合物的排毒以及通过不可消化的成分刺激食欲并改善营养。有积累的证据表明益生菌可以有效抑制各种鱼类病原体,但是抑制作用的原因通常是未说的。简介
摘要 :植物育种在增强植物遗传潜力方面发挥着重要作用,旨在改善植物的产量、抗病性和抗逆性等特性。本文深入分析了各种植物育种技术,包括大规模选择和杂交等传统方法,以及基因工程和 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 基因编辑等现代创新方法。对每种方法都进行了彻底分析,以评估其在作物改良方面的具体应用和成就方面的有效性、潜在应用和局限性,强调植物育种在确保粮食安全和农业可持续性方面的重要作用。通过开发高产和抗逆性作物品种,植物育种不仅可以应对气候变化带来的挑战,而且还有助于提高农业的经济可行性。植物育种方法的不断发展凸显了研究和创新对于满足全球粮食需求的重要性。
摘要。引入分子标志物已导致水果作物的遗传多样性变化。它们对于多种学科至关重要,例如分类法,基因映射,系统发育分析和疾病抗性评估。这项广泛的研究着眼于各种分子标记,包括AFLP,RAPD,SSRS,SCOT和SNP,以表征水果作物基因组。我们研究了它们如何有助于我们对疾病抗病性,遗传多样性和进化论,在多种果实作物中的动态,例如坚果和热带,亚热带和温带水果。繁殖者现在可以创建具有改善性状,更快的繁殖时间表和更好遗传资源保护的新品种。他们使进行自定义的遗传分析并更深入地了解农业以外的其他领域的遗传学和进化是可行的。从水果作物,保护计划以及更大的科学和医学领域中遗传资源的可持续使用都受到这种历史观点的影响。
摘要 成簇的规律间隔短回文重复序列/CRISPR 相关蛋白 9 (CRISPR/Cas9) 系统的开发彻底改变了基因组编辑和植物育种。CRISPR/Cas9 技术在包括葡萄在内的果树作物中的应用可以精确改良重要的农艺性状。在这篇综述中,我们首先描述了基于最广泛使用的 CRISPR/Cas9 系统和最近开发的 CRISPR 技术的基因组编辑。然后,我们重点介绍了 CRISPR/Cas9 在葡萄抗病性提高、CRISPR/Cas9 系统优化、多重基因组编辑和脱靶效应分析中的应用。我们还讨论了基因组编辑面临的挑战,应克服这些挑战才能实现 CRISPR 技术在葡萄中的潜力。最后,我们强调了未来可能的实验考虑,以实现更精确和更有效的葡萄基因组编辑。
植物育种是农业科学的一个重要分支,其主要目的是通过选择性育种提高植物的产量、抗病性和适应性。随着生物技术的进步,植物育种进入了一个新时代。分子标记辅助选择是现代植物育种的重要手段。通过检测与目标性状相关的分子标记,育种者可以在育种早期识别出有前途的植物个体,大大提高育种的效率和速度。基因工程和基因组编辑等现代生物技术为植物育种提供了更精准、更高效的手段。例如,基因转移或基因敲除(CRISPR/Cas9)可以为植物引入新的性状或改变现有的性状。离体培养方法也可以快速繁殖遗传一致的植物材料,这对于难以通过传统方式繁殖的植物物种尤其有价值。此外,组织培养可用于生产无病原体的种植材料。
2.3 参观利用基因编辑技术(CRISPR-Cas 9)进行植物栽培的实验田。科迪华对CRISPR-Cas9技术在植物上的应用进行研究和实验。它可以被编程来找到从植物中切割出来的所需基因组。而DNA则通过细胞内源性机制进行自我修复,基因编辑将有助于加速植物的发育过程。植物的抗病性通常需要6至7年的研究。但有了这个技术只需 6-7 个月,测试植物中不会混入外来 DNA,也不会产生疾病。目前正在对玉米、大豆、水稻、油菜和高粱进行测试,以帮助世界各地的农民对抗植物疾病并提高产量。目前正在进行试验,例如使用 CRISPR 技术为大豆添加氨基酸。这种种植方式已获得美国农业部的批准,仅用于实验研究目的。