摘要:苔麸(Eragrostis tef (Zucc.) Trotter)是埃塞俄比亚 70% 人口的主食作物,目前在多个国家种植,用于生产谷物和饲料。它是营养最丰富的谷物之一,而且比玉米、小麦和大米等主要谷物更能适应贫瘠的土壤和气候条件。然而,苔麸是一种产量极低的作物,主要是由于倒伏(即茎秆不可逆转地掉落在地上)和生长季节的长期干旱。气候变化引发了多种生物和非生物胁迫,预计在可预见的未来将导致严重的粮食短缺。这就需要一种替代的、强有力的方法来提高对各种胁迫的适应力并提高作物产量。传统育种已被广泛实施,以开发具有感兴趣性状的作物品种,尽管该技术存在一些局限性。目前,基因组编辑技术作为改善关键农艺性状的一种手段,越来越受到植物生物学家的关注。本综述讨论了成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (CRISPR-Cas) 技术在提高苔麸抗逆性方面的潜在应用。已讨论了相关单子叶植物物种的几种假定的非生物抗逆基因,并提议将其作为通过 CRISPR-Cas 系统编辑苔麸的目标基因。这有望提高抗逆性并提高生产力,从而确保最需要的地区的粮食和营养安全。
必须改进可持续水产养殖方法,以应对环境压力和全球日益增长的粮食需求带来的问题。本研究探讨了尼罗罗非鱼(Oreochromis niloticus)养殖的前沿方法,重点关注免疫调节技术、微生物组改造以及减少环境压力以提高抗逆性和产量的关键任务。益生菌、益生元和合生元在增强营养吸收、增强抗病能力和优化肠道健康方面发挥着重要作用,因此微生物组改造成为一项至关重要的策略。使用富含生物活性化学物质的功能性饲料和研发定制疫苗是免疫调节方法取得进展的两个例子,这些方法已被证明有望增强罗非鱼的免疫系统,抵御病原体威胁。通过强化水产养殖系统、控制水质和培育抗逆性鱼种,同时减少缺氧、水温变化和污染物暴露等环境压力,从而提供保障可持续生产的整体策略。鉴于这些环境压力因素对该行业构成重大威胁,应对这些压力因素的重要性不言而喻。基因组学、转录组学和精准水产养殖工具等新兴技术能够监测和调整养殖作业,以适应尼罗罗非鱼的独特需求,进一步促进了这些策略的整合。本综述强调了以科学为导向的综合方法在将尼罗罗非鱼养殖转变为具有韧性、可持续且富有成效的产业方面的潜力,并强调了应对环境压力因素在这一转型中的重要性。图文摘要
为了确保全球粮食安全,可以利用获得的遗传信息培育出产量潜力更大、抗逆性更强的新水稻品种。利用该项目的数据,育种者将能够培育出特别适合特定地理区域、气候条件和农业技术的水稻品种,从而提高水稻产量,同时减少对环境的影响。发现的遗传信息将使以水稻为基础的可持续发展产品的创造变得更加容易,包括生物燃料、生物塑料和药物。此外,为了改良水稻并加速其在其他作物中的应用,该项目将促进创新基因组技术和基因编辑和精准育种等技术的开发。
满足世界人口不断增长的粮食需求是全球农业政策和经济面临的主要挑战。粮食安全问题需要创新解决方案。现代生物技术对粮食安全、财富和可持续发展具有巨大贡献潜力。基因工程提供了改善营养、提高产量和增强作物抗逆性的工具。基因组编辑的新技术提供了充足的手段来克服传统植物育种固有的局限性,但它们的工业适用性取决于监管环境、决策和公众认知。科学和政策目标的协调有助于实现现代生物技术对粮食安全、财富和可持续发展的贡献潜力。
免疫耐受性诱导方案的成功定义为在输注IF001后一年还活着,是所有具有正常肾脏功能正常的免疫抑制剂,没有肾脏移植排斥反应或肾脏抗移植物或抗逆性疾病(GVHD)的证据。耐受性诱导方案的成功率是根据针对非恶性血液学疾病(如性障碍性贫血或镰状细胞病)的部分HLA匹配造血细胞移植的相似方案的结果估计的。虽然血液学恶性肿瘤的移植结果有更多数据,但这些患者的移植却是不同的,因为它们不寻求最大程度地减少GVHD和血液癌后移植物的复发,这会使结果混淆。
摘要 芫荽 ( Coriandrum sativum L.) 是一种重要的草本植物,广泛用于全球烹饪、药用和芳香应用。芫荽改良的关键进展包括提高产量、抗逆性和植物化学物质的产生。生物技术方法在应对抗病性、环境压力和质量改进等挑战方面的潜力已被充分了解。CRISPR/Cas9 等基因改造技术已实现精确的基因编辑,以实现抗病性、除草剂耐受性和改善营养吸收等特性。此外,生物技术工具可实现精确的基因编辑,允许在不引入外来基因的情况下进行有针对性的修改。这种方法确保了转基因芫荽品种的安全性和法规遵从性,解决了与消费者接受度和环境影响相关的问题。此外,组织培养协议的进步促进了优良芫荽品种的快速繁殖,规避了与种子发芽和保持遗传纯度相关的问题。采用标记辅助选择 (MAS) 和基因组选择的分子育种策略加速了具有理想农艺性状的高产芫荽品种的开发。包括基因组学、转录组学和代谢组学在内的“组学”方法在阐明芫荽重要性状的遗传基础方面提供了宝贵的见解,了解了芫荽发育、应激反应和次生代谢物生物合成的分子机制。本综述概述了芫荽研究的最新生物技术进展,重点关注基因工程、组织培养、代谢组学和分子育种等领域,旨在提高芫荽的产量、质量和抗逆性。关键词:芫荽、生物技术、基因工程、
水稻是全球一半以上人口的主食。水稻种植在印度约 4300 万公顷的土地上,分布在不同的生态环境中。水稻在开发高产、抗虫/抗病品种以及不同生态环境的生产技术方面取得了重大进展。然而,水稻生产也出现了新的挑战,主要是由于气候变化、土壤质量下降、人均水资源供应量减少、养分利用效率低下以及昆虫和疾病发病率增加。因此,人们正致力于开发具有多种抗逆性的气候适应性水稻品种,以及开发气候智能型生产和保护技术,以确保粮食和营养安全。因此,当前的挑战是通过实施先进的研究成果来提高水稻产量,同时提高气候适应性。
植物相关微生物群由多种但分类结构不同的群落(如细菌、真菌和古菌)组成,被认为是宿主植物的第二基因组,在不同植物物种之间存在差异(Brown 等人,2020 年)。植物与微生物之间的相互作用赋予植物宿主适应性优势,包括养分循环、促进生长、抗逆性和抗病原体性(Trivedi 等人,2020 年)。最近针对根系和根际土壤的研究表明,微生物群落的组装和结构受各种生物和非生物因素的影响,包括植物遗传和年龄、土壤类型和土壤特性(如 pH 值和营养物质)(Yu 等人,2018 年)。据报道,微生物群落的组装和网络
摘要 基因组编辑技术的出现为水果、观赏作物、工业作物和所有特种作物的靶向性状增强开辟了新途径。特别是,基于 CRISPR 的编辑系统(源自细菌免疫系统)已迅速成为世界各地研究小组的常规使用工具,这些研究小组寻求以更高的精度、更高的效率、更少的脱靶效应和与 ZFN 和 TALEN 相比总体上更易于使用的方式编辑植物基因组。CRISPR 系统已成功应用于多种园艺作物和工业作物,以促进果实成熟、提高抗逆性、改变植物结构、控制花朵发育时间、增强所需代谢物的积累以及其他重要的商业性状。随着编辑技术不断
气候变化是多方面的,主要包括气温升高、极端天气事件发生频率增加、大气中温室气体(如二氧化碳、甲烷)积累增加以及降水模式改变( Gray and Brady,2016 ; Vennapusa et al.,2023 )。这些事件加剧了非生物胁迫因素,同时也为病虫害等生物胁迫提供了有利条件。因此,了解和保护这些胁迫因素之间的复杂相互作用对于开发抗逆性作物品种和确保全球粮食和营养安全至关重要( Kulkarni et al.,2018 )。在这方面,植物科学家面临着制定增强作物抗逆性和确保粮食安全的战略的重大挑战。在自然界中,植物同时暴露于多种非生物胁迫因素(Nabi 等人,2019 年),这使它们能够通过各种精细平衡的反应共同进化并发展耐力(Lima 等人,2015 年;Gonzalez Guzman 等人,2022 年)。了解植物反应中的分子、遗传和调控机制将有助于制定缓解气候变化的策略。下一代测序技术的进步导致了高质量参考基因组、高通量基因分型系统和复杂遗传连锁图谱的开发,这使得能够通过全基因组关联研究 (GWAS) 和数量性状位点 (QTL) 作图精确识别与感兴趣性状相关的基因组区域(Asekova 等人,2021 年;Uffelmann 等人,2021 年)。研究人员能够通过标记辅助选择 (MAS) 或基因组选择 (GS) 显著加快作物简单和复杂性状遗传改良的速度。由于这些发展,在理解植物对非生物和生物胁迫的耐受性和适应性机制方面取得了实质性进展。随着基因编辑技术的最新进展,现在可以开发具有