全球气候变化,包括干旱、极端气温以及盐碱化和重金属污染等不利的土壤条件,对作物的产量和品质产生了深远影响,对全球粮食安全构成了重大威胁( Waadt 等,2022 年)。为了更好地适应各种非生物胁迫,谷物作物的细胞过程和整个植物生理发生了一些根本性变化( Zhang 等,2022 年)。这些适应性反应对于增强作物抗性至关重要,对作物改良具有极其重要的意义( Gong 等,2020 年)。优良种质的鉴定、潜在机制的发现和重要抗性基因的利用对于抗非生物胁迫作物育种至关重要。高通量表型评估、全基因组关联研究、多组学分析和基因编辑等先进技术不仅加深了我们对作物应对非生物胁迫的分子机制的理解,而且加速了培育具有增强的非生物胁迫抗性的作物(Gao,2021)。尽管通过应用这些先进技术,在模式植物和非模式植物中已经报道了参与植物应对非生物胁迫的多种策略和重要基因,从而增进了我们对主要作物抗非生物胁迫机制的理解,但仍存在知识上的空白。我们设立了“作物抗非生物胁迫育种进展”研究课题,目的是弥补这些空白。本研究课题包括以下主题:(a)非生物胁迫抗性评估和优良种质资源的利用; (b) 通过遗传或基因组学方法鉴定赋予抗非生物胁迫性的基因,例如 BSA-seq、QTL 定位、GWAS 和关键基因家族的全基因组表征;(c) 利用多组学研究作物非生物胁迫的生理和分子机制
非生物胁迫是农业生产的主要限制因素,对农业生产构成严重威胁。传统育种在上个世纪显著提高了作物的生产力,但由于非生物胁迫的多基因特性,传统育种已达到其最大能力。或者,生物技术方法可以提供新的机会来生产能够适应快速变化的环境并在严重的环境胁迫条件下仍能获得高产的作物。在过去的几十年里,许多与胁迫相关的基因已被鉴定和操纵以产生抗胁迫植物,这可能导致世界上大多数国家的粮食产量进一步增加。本综述重点介绍了使用转基因技术和基因编辑技术提高植物非生物胁迫耐受性的最新进展,并强调了在人口不断增加但可用于粮食生产的土地和水资源不断减少以及气候变化迅速对农业不利的世界中,使用基因工程来确保粮食和纤维供应的潜力。
非小细胞肺癌 (NSCLC) 仍然是全球癌症死亡的主要原因。以铂为基础的化疗是标准治疗方法,但具有毒性和耐药性等局限性。金、钌和其他金属的金属配合物已成为有前途的替代品。本综述对 NSCLC 的金属药物进行了全面分析。文献计量分析表明,人们对阐明机制、开发靶向疗法和协同组合的兴趣日益浓厚。金属药物的分类突出了铂、金和钌化合物以及新兴金属。多种机制包括 DNA 损伤、氧化还原调节和免疫调节。临床前研究证明了体外和体内的细胞毒性和抗肿瘤作用,提供了概念验证。临床试验表明铂类有实用性,但耐药性仍然存在问题。非铂金属药物表现出良好的安全性,但迄今为止单一药物的疗效适中。纳米粒子等药物输送方法显示出提高治疗指数的潜力。未来的方向包括优化金属基复合物、阐明耐药机制、开发生物标志物和联合疗法,以充分实现金属药物对非小细胞肺癌治疗的前景。
摘要:鹰嘴豆是世界上最重要的豆类作物之一,是极好的蛋白质来源。它在雨养条件下生长,平均产量为 1 吨/公顷,远低于最佳条件下 6 吨/公顷的潜力。高温、低温、干旱和盐度的综合影响会影响物种的生产力。在这方面,回顾了几种赋予对非生物胁迫耐受性的生理、生化和分子机制。近 100,000 个鹰嘴豆种质的大量收集是育种计划的基础,通过常规育种,如种质引进、基因/等位基因渗入和诱变,已经取得了重要进展。同时,分子生物学和高通量测序的进展使得能够开发出针对鹰嘴豆属的特定分子标记,从而促进产量成分和非生物耐受性的标记辅助选择。此外,转录组学、蛋白质组学和代谢组学已使我们能够识别与鹰嘴豆对非生物胁迫的耐受性相关的特定基因、蛋白质和代谢物。此外,在转基因植物和使用基因编辑获得耐旱鹰嘴豆的研究中也取得了一些有希望的结果。最后,我们提出了一些未来的研究方向,这些研究方向可能有助于在气候变化的情况下获得对非生物胁迫具有耐受性的鹰嘴豆基因型。
高通量基因筛选是一种强大的方法,可用于在全基因组范围内研究基因功能并识别对某些压力负责的基因。在这里,我们开发了一种 piggyBac 策略,可将汇集的 sgRNA 文库稳定地递送到细胞系中。我们使用这种策略在家蚕细胞中进行基于全基因组成簇的规律间隔短回文重复技术 (CRISPR)-Cas9 的筛选。我们首先构建了一个包含 94,000 个 sgRNA 的单向导 RNA (sgRNA) 文库,该文库靶向 16,571 个蛋白质编码基因。然后,我们使用 piggyBac 转座子在 BmE 细胞中生成敲除集合。我们确定了 1006 个在正常生长条件下对细胞生存至关重要的基因。在已确定的基因中,82.4%(829 个基因)与七种动物物种中的必需基因同源。我们还确定了 838 个基因,它们的缺失促进了细胞生长。接下来,我们分别使用温度和杆状病毒对生物或非生物胁迫进行了针对特定环境的阳性筛选,从每个筛选中确定了几个关键基因和途径。总之,我们的结果为家蚕基因组的功能注释和解释导致各种条件的关键基因提供了一个新颖而通用的平台。这项研究还展示了在非模式生物中进行全基因组 CRISPR 筛选的有效性、实用性和便利性。
RAS(KRAS、NRAS 和 HRAS)是癌症中突变最频繁的基因家族,因此,30 多年来,研究人员一直在寻找有效的 RAS 抑制剂。即使在 10 年前,RAS 抑制剂也是非常难以捉摸的,以至于 RAS 被称为“无药可治”。现在,随着等位基因特异性共价抑制剂成功对抗非小细胞肺癌中最常见的 RAS 突变版本 KRAS G12C ,我们有机会评估治疗 RAS 驱动癌症的最佳治疗策略。突变特异性的生化特性以及起源组织可能会影响此类治疗的有效性。目前,通过等位基因特异性抑制剂直接抑制突变型 RAS 是最佳治疗方法。针对 RAS 激活途径或 RAS 效应途径的疗法可以与这些直接 RAS 抑制剂、免疫检查点抑制剂或 T 细胞靶向方法相结合,以治疗 RAS 突变肿瘤。本文我们回顾了针对突变 RAS 蛋白的疗法的最新进展,并讨论了这些疗法的未来挑战,包括组合策略。
水稻 (Oryza sativa L.) 是世界人口(亚洲和非洲)消费最广泛的主食。作为半水生一年生植物,水稻极易因各种环境压力而损失。许多研究表明需要开发耐非生物和生物胁迫的品种 [1] 。标记辅助育种、诱变育种、RNA 干扰、反义技术、ZFN 和 TALEN 等方法被用于开发水稻等作物抗非生物胁迫的优良性状。然而,最近,成簇的规律间隔的短回文重复序列相关核酸酶 (CRISPR/Cas) 系统作为开发作物可遗传基因操作的有效工具而备受关注 [2] 。 2013 年,利用 CRISPR/Cas9 在模式植物拟南芥中成功开发出基于基因组的编辑技术 [3] ,此后,各种作物中已成功编辑了大量与农艺性状相关的基因。这一进步为研究人员开辟了许多新的可能性,包括能够更快地了解生物植物系统。CRISPR 系统主要用于提高不同作物的产量效率、生物强化、生物和非生物胁迫耐受性 [1] 。
疫苗是一种生物药物,旨在激活免疫系统识别和对抗非自身分子,从而提供免疫力。从历史上看,疫苗的开发是为了预防病毒和细菌等病原体引起的疾病。最近,疫苗也被开发用于治疗目的,例如癌症治疗1。由于其内在的细胞毒性能力,疫苗接种为传统化疗药物提供了一种有趣的替代方案,后者表现出很高的脱靶毒性。然而,必须严格评估新疫苗的有效性和安全性,以验证其作为药物的潜在用途。不同免疫成分之间的适当平衡对于疫苗的成功至关重要2。促炎反应在免疫系统的初始激活和产生强大的免疫记忆中起着至关重要的作用。相反,抗炎反应对于解决炎症至关重要,确保平衡以促进疫苗的有效性而不会引起有害的副作用。因此,我们提出了一种基于研究免疫调节来评估新型抗癌疫苗的潜在有效性和安全性的方法。该策略涉及利用报告系统,通过对整个生物体和组织的体内成像,实现对药物作用的非侵入性分析,将药代动力学、药效学和毒理学数据整合到一个
水稻是 32 亿人的主食。2008 年震惊许多亚洲国家的粮食安全威胁依然存在,因为农民面临着用更少的水、土地和投入资源生产更多水稻的挑战。水稻改良的目标已经从单纯的高产转变为高产、优质、营养均衡、健康安全和可持续生产的综合目标,尤其是在中国 [1] 。培育绿色超级稻 (GSR) 等水稻品种将满足这些目标并提高水稻生产的利润。近几十年来遗传学、基因组学和育种技术的进步 [2] 为通过设计育种有效开发未来品种提供了机会。在这期特刊“水稻作为模型作物:遗传学、基因组学和育种”中,我们邀请了 19 位不同领域的专家来回顾水稻遗传学、基因组学和育种技术的进展。其中有四篇论文是关于抗非生物胁迫的,两篇是关于抗生物胁迫的,四篇是关于农艺性状的,三篇是关于基因挖掘平台的,一篇是关于基因组选择的,一篇是关于基因编辑的,两篇是关于基因组设计育种的,两篇是关于水稻杂种优势的。本期特刊的目的是综述水稻基因组学和分子育种技术的主要进展,特别是在中国。这里我们根据主题分类总结了这些论文,并添加了我们的观点。
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关基因 (Cas) 系统和基于 RNA 干扰 (RNAi) 的非转基因方法是能够彻底改变植物研究和育种的强大技术。近年来,这些现代技术的应用已在农业的各个领域得到探索,为植物作物引入或改善重要的农艺性状,例如提高产量、营养品质、抗非生物胁迫和生物胁迫。然而,每种技术的局限性、公众认知和监管方面阻碍了其在开发新作物品种或产品方面的广泛应用。为了扭转这些不幸事件,科学家们一直在研究替代方法,以提高目标生物体中 CRISPR 和 RNAi 系统成分的特异性、吸收和稳定性,并降低非目标生物体中毒性的可能性,以最大限度地减少环境风险、健康问题和监管问题。在本综述中,我们讨论了与风险评估、毒性以及在作物管理和育种中使用 CRISPR/Cas 和局部 RNAi 技术取得进展相关的几个方面。本研究还强调了每种技术的优点和可能的缺点,简要概述了如何避免脱靶发生、提高靶向特异性的策略、与纳米技术相关的危害/好处、公众对可用技术的看法、关于局部 RNAi 和 CRISPR 技术的全球监管框架,最后介绍了成功的案例研究