我们已经开发了无低温的低温Terahertz扫描隧道显微镜(THZ-STM)。该系统利用连续的无流温冷却器来达到约25 K的低温。与此同时,超小的超高真空室导致从样品到视口的距离降低到仅4厘米。na = 0.6可以在真空室内放置整个光学组件(包括大抛物面镜)时达到。因此,如果不损害STM的性能,光耦合的便利性得到了很大的改善。基于此,我们将THZ脉冲引入了隧道连接处并构建了THZ-STM,在THZ驱动的电流成像中实现了原子水平的空间分辨率,并在持续的泵-Probe测量值的自动相互交流信号中,在thz驱动的电流成像和子picosecond(sub-ps)时间分辨率中。提供了来自各种代表性样本的实验数据,以展示该仪器的性能,并将其确立为研究纳米级非平衡动态过程的理想平台。
Ariel(大气遥感红外系外行星大型巡天)是欧空局“宇宙视野”计划框架内采用的 M4 任务。其目的是通过凌日光谱法对已知系外行星的大气层进行巡天。发射计划于 2029 年进行。Ariel 科学有效载荷包括一台离轴、未被遮挡的卡塞格林望远镜,该望远镜为波段在 0.5 至 7.8 µm 之间的一组光度计和光谱仪提供信号,并在低温(55 K)下运行。望远镜组件采用创新的全铝设计,可耐受热变化,避免影响光学性能;它由一个主抛物面镜组成,其椭圆形孔径为 1.1 m 的长轴,随后是安装在重新聚焦系统上的双曲面次镜、抛物面重新准直三镜和一个平面折叠镜,将输出光束引导至与光学平台平行。基于 3 个柔性铰链的创新安装系统支撑着光学平台一侧的主镜。光学平台另一侧的仪器舱内装有 Ariel 红外光谱仪 (AIRS) 和精细制导系统/近红外光谱仪 (FGS/NIRSpec)。望远镜组装处于初步设计审查的 B2 阶段,开始制造结构模型;一些组件,即主镜、其安装系统和重新聚焦机制,正在进行进一步的开发活动,以提高其准备程度。本文介绍了 ARIEL 望远镜组装的设计和开发。