CRISPR 技术的最新发展为改进梭菌属专用的基因组编辑工具开辟了新的可能性。在本研究中,我们改进了基于该技术的双质粒工具,以便对产生丙酮/丁醇/乙醇 (ABE) 或异丙醇/丁醇/乙醇 (IBE) 混合溶剂的两种拜氏梭菌参考菌株的基因组进行无瘢痕修饰。在 NCIMB 8052 ABE 生产菌株中,SpoIIE 孢子形成因子编码基因的失活导致孢子形成缺陷的突变体,并且通过用功能性 spoIIE 基因补充突变菌株可以恢复此表型。此外,将真菌纤维素酶编码 celA 基因插入拜氏梭菌 NCIMB 8052 染色体中,产生具有内切葡聚糖酶活性的突变体。接下来,我们采用类似的双质粒方法对天然 IBE 产生菌株 C. beijerinckii DSM 6423 的基因组进行编辑,该菌株此前从未进行过基因工程改造。首先,删除赋予甲砜霉素抗性的 catB 基因,使该菌株与我们的双质粒编辑系统兼容。作为概念验证,我们在 C. beijerinckii DSM 6423 Δ catB 中使用了我们的双质粒系统,以去除内源性 pNF2 质粒,从而大幅提高转化效率。
拜氏梭菌 (Clostridium beijerinckii) 是一种很有前途的丁醇工业生产微生物,但其丁醇产量低且缺乏高效的基因工程工具包。一些负责 Spo0A 磷酸化的组氨酸激酶 (HK) 已被证实是调控溶剂型梭菌 (如丙酮丁醇梭菌) 丁醇生物合成的重要功能组分,但尚未在拜氏梭菌中进行有关 HK 的研究。本研究通过序列比对,筛选出 6 个已注释但尚未鉴定的候选 HK 基因,这些基因与丙酮丁醇梭菌的基因具有部分同源性(不低于 30%)。利用基于 CRISPR-Cas9n 的基因组编辑技术删除这些 HK 基因的编码区。 cbei2073 和 cbei4484 的缺失导致丁醇生物合成发生显著变化,与野生型相比,丁醇产量分别增加了 40.8% 和 17.3% (13.8 g/L 和 11.5 g/L vs. 9.8 g/L)。观察到丁醇生产速率更快,丁醇生产率分别大幅提高了 40.0% 和 20.0%,表明这两个 HK 在调节 C. beijerinckii 细胞代谢中起重要作用。此外,两个 HKs 失活菌株的孢子形成频率分别降低了 96.9% 和 77.4%。与野生型相比,另外四个 HK 缺失突变菌株(包括 cbei2087、cbei2435、cbei4925 和 cbei1553)表现出的表型变化很小。本研究揭示了HKs在拜氏梭菌中孢子形成和溶剂生成中的作用,并提供了一种新的HKs工程化策略来提高代谢物的产量。本研究产生的高丁醇生产菌株在工业生物丁醇生产中具有巨大的潜力。