摘要:作为模块化多电平换流器(MMC)的核心功率器件,绝缘栅双极晶体管(IGBT)模块的故障机理研究与状态监测技术对于保证运行可靠性具有重要意义。IGBT模块劣化引起的工作参数畸变、内部结构异常将严重影响模块化多电平换流器(MMC)的工作性能。目前,关于IGBT模块状态监测的综述较多,但缺少对MMC中IGBT模块状态监测的相关综述。首先,分析MMC的结构特点和工作原理;然后,针对功率模块型和压装型IGBT的故障机理,对IGBT模块的状态监测技术进行总结,并对MMC子模块中IGBT模块的状态监测方法进行补充分析;最后,针对当前研究中存在的不足,结合目前的研究现状,提出了柔性直流输电系统中IGBT模块状态监测与评估的研究方向。本研究得到湖南省科技厅重点研发计划项目(No. 2021GK2020)资助。关键词:柔性直流输电;MMC;IGBT模块;故障机理;状态监测
本论文讨论的另一个重要主题是 IGBT 模块的状态监测。为此,开发了一个功率循环测试台。选择 𝑉 𝐶𝐸(𝑜𝑛) 作为跟踪功率器件在整个循环测试过程中退化状态演变的参数。因此,构思并开发了一个在线 𝑉 𝐶𝐸(𝑜𝑛) 测量板。为了获得有关所应用循环协议的更多相关见解,开发了一种在线估计 IGBT 器件结温的策略,该策略基于卡尔曼滤波器的使用。该策略还能够通过分析热敏电参数来估计 IGBT 健康状态的退化程度。
本文基于能量分析,提出了一种用于独立直流微电网中基于转换器的可再生能源的新型本地控制方法。所研究的直流微电网包括可再生能源、备用发电单元和基于电池的储能系统,它们通过降压和双向降压-升压转换器连接到公共直流母线。所提出的控制方法通过控制转换器的开关功能来满足微电网输出变量的稳定性以及电流控制和电压调节,而与能源动态无关。通过数学方法利用状态反馈将开关函数的动态分量提取为控制信号。控制输入基于 Lyapunov 稳定性定理设计,通过能量分析保证独立直流微电网中输出变量(直流母线电压和发电电流)的稳定性。所提出的分布式控制器可以很容易地推广为一个平台,其中包含各种独立直流微电网,包括任何类型或数量的分布式发电,例如可再生能源、基于化石燃料的发电和储能单元。这种局部控制方法的其他特点是简单、快速、全面和独立于分布式发电。通过在 MATLAB/SIMULINK 环境中的仿真验证了所提出的控制器的动态性能评估。结果验证了所提出的控制策略在各种运行条件下的准确性和稳定性。
摘要 金属化聚丙烯电容器(MPPC)因损耗低、自愈能力强等优点,在高压直流输电系统的模块化多电平换流器(MMC)中得到广泛应用。由于等效串联电阻的增加和电容量的减小,MMC中MPPC的性能随时间推移而劣化,因此MPPC的可靠性分析至关重要。本文提出一种考虑腐蚀失效的有限元法(FEM)来分析MPPC的可靠性。首先,建立MPPC的等效电模型和实际热模型,计算MPPC的损耗和温度分布。其次,利用FEM模型对MPPC的腐蚀失效进行分析和仿真,利用聚丙烯薄膜老化模型建立MPPC的寿命模型,并通过传统腐蚀失效寿命模型和浮充老化试验对模型进行验证。最后,在MMC模型中提取各子模块(SM)的电压,结合FEM模型和寿命模型分析各SM中MPPC的寿命。结果表明,在MMC中,靠近直流线或中间部分的各臂中的SM具有较短的MPPC寿命。
正如 Migrate 项目 [1] 以及 [13-18] 所报告的,在非同步可再生能源发电高渗透率的情况下,电力系统稳定性面临挑战。这些稳定性问题可分为频率、电压、转子角度、换流器驱动和谐振稳定性 [2]。最近的研究 [3-6] 提出了在非同步发电模块(基于换流器)渗透率极高的输电系统中运行的“观点”和方法。此类项目得出结论,如果在系统运行期间确保一定数量的功能,则可以在非同步发电模块高渗透率的情况下确保互联输电系统的稳定和稳健运行。这些功能可以由同步或非同步发电模块提供 [7]。[3] 介绍了七种功能,如果全部实现,则称为形成电网。
换流变电站的核心是使用 8.5 kV、125 mm 晶闸管的 H400 系列阀门。该项目的极高环境温度(高达 55°C)带来了巨大挑战。由于阀门有源部分(晶闸管中的硅)的温度需要限制在 90°C,因此水冷装置需要比标准 HVDC 链路更高的冷却剂流速。阀门内的冷却管布置改为并联布置,以增加进入换流器的总流速。这需要为 HVDC 安装建造有史以来最大的水冷装置。
换流站的核心是使用 8.5 kV、125 mm 晶闸管的 H400 系列阀门。该项目的极高环境温度(高达 55°C)带来了重大挑战。由于阀门活动部分(晶闸管中的硅)的温度需要限制在 90°C,因此水冷装置需要比标准 HVDC 链路更高的冷却剂流速。阀门内的冷却管布置改为并联布置,以增加进入换流器的总流速。这需要为 HVDC 安装建造有史以来最大的水冷装置。
HVDC Light ® Valve Hall 堪培拉/苏黎世,2024 年 5 月 23 日——日立能源已被 Marinus Link Pty Ltd (MLPL) 选中,为具有全国意义的高压直流 (HVDC) 项目提供电力,该项目将增强澳大利亚大陆与塔斯马尼亚电网之间的连接。约 345 公里长的电缆路线 HVDC 系统将使维多利亚州和塔斯马尼亚州之间的可再生能源双向流动。Marinus Link 首次在澳大利亚使用先进的转换器技术在链路的两端稳定和整合越来越多的可再生能源到电网中。该连接将使塔斯马尼亚州能够进口维多利亚州生产的过剩太阳能和风能,同时保留其水力发电并储存多余的能源。清洁水电可以在最需要的时候为大陆电网供电,充当国家的大电池。此外,它还加强了澳大利亚电网的供电安全性,该电网的电力越来越多地来自可持续能源。日立能源将为其 HVDC Light® 电压源换流器 (VSC) 站供电
摘要 — 在主动配电网中,可再生能源 (RES) 例如光伏 (PV) 和储能系统(例如超导磁能储能 (SMES))可以与消费者结合组成微电网 (MG)。光伏的高渗透率导致联络线潮流波动剧烈,并严重影响电力系统运行。这可能导致电压波动和功率损耗过大等若干技术问题。本文提出了一种基于模糊逻辑控制的 SMES 方法 (FSM) 和一种基于优化模糊逻辑控制的 SMES 方法 (OFSM),用于最小化联络线潮流。因此,波动和传输功率损耗降低了。在 FSM 中,SMES 与鲁棒模糊逻辑控制器 (FLC) 一起使用以控制联络线潮流。在 OFSM 中采用优化模型来同时优化 FLC 的输入参数和 SMES 的电压源换流器 (VSC) 的无功功率。将最小化联络线潮流作为优化模型的目标函数,利用粒子群优化 (PSO) 算法解决优化问题,同时考虑公用电网、VSC 和 SMES 的约束。仿真结果证明了所提方法的有效性和鲁棒性。
EEE G541 配电设备和配置 [3 2 5] 消费者端配电装置的基本配置。变压器类型、规格、性能、保护和尺寸。电缆和绝缘层的类型、电缆参数、载流量和保护。低压开关设备的额定值及其在选择、开关瞬态和清除时间中的应用。保险丝的属性(以载流量为参考)。仪表、仪器变压器及其应用。配电层的电压控制。电能质量功率因数、频率和谐波含量的基本概念 EEE G542 电力电子转换器 [3 2 5] 转换器的重要性在于它是电源和负载之间的接口。DC-DC 转换器:降压、升压和降压-升压配置。ACDC 转换器:单相和三相二极管和晶闸管转换器。晶闸管转换器中的逆变和线路换向逆变器的应用。 DCAC 转换器:单相和三相开关模式电压源逆变器、不同类型的 PWM 操作、多级 VSI 操作、空间矢量调制技术。AC-AC 转换器:晶闸管供电交流负载、循环换流器。矩阵转换器阵列及其作为 DC-DC 和 DC-AC 转换器的操作。EEE G543 功率器件微电子学与选择 [ 3 0 3] 功率器件封装的热特性、R θJC 和 R θCS 的问题、热流及其对器件温度的影响、散热器设计和选择。双层结行为、漂移区的概念、功率二极管的特性。厚膜 BJT 中的基极操作、稳态特性、开启和关闭时间、多级功率达林顿。四层结行为、晶闸管的两个晶体管模型、四层结器件的动态模型。GTO 晶闸管、四层结器件的关闭机制、当前的技术问题。 MOS 的工作原理和特性、功率 MOSFET 的特性和结构。MOSFET 到 IGBT 的发展、技术优势、特性和动态行为。绝缘栅技术的当前技术问题。矩阵转换器简介。EEE G545 电力电子系统控制与仪表 [3 0 3] 参考电力电子转换器的调节和控制问题。反馈转换器模型:基本转换器动态、快速切换、分段线性模型、离散时间模型。DC-DC 转换器的电压模式和电流模式控制、整流器系统的比较器控制、比例和比例积分控制应用。基于线性化的控制设计:传递函数、补偿和滤波、补偿反馈控制系统。滞后控制基础知识以及在 DC-DC 转换器和逆变器中的应用。一般边界控制:边界附近的行为以及合适边界的选择。模糊控制技术的基本思想和性能问题。电力电子电路传感器、速度传感器和扭矩传感器。EEE G552 固态硬盘 [3 2 5] 驱动系统简介:要求、组件和基准;电机理论回顾;电机的电力电子控制:要求和操作问题;感应电机的静态速度控制:交流电源控制器、滑差能量回收、VSI 和 CSI 控制的感应电机;同步电机和相关机器的速度控制;直流电机速度控制问题:整流器和斩波控制器;先进的感应电机驱动控制:矢量控制,