二、推进系统的技术现状与问题 现阶段航天推进技术,唯一实用的推进系统是化学推进系统和电推进系统,它们都是基于质量的排出来引起动量推力。目前的推进系统广泛采用基于动量守恒定律的动量推力,由于其最大速度受气体有效排气速度与质量比的自然对数的乘积限制,其速度太慢,无法使飞船实现行星际旅行和恒星际旅行,因此一直亟待推进方式的突破。 2.1动量推力(反作用推力) 如上所述,目前除太阳帆和光帆外的各种推进系统都是基于动量守恒定律的。对于基于动量守恒定律的动量推力,其最大速度(V)受气体有效排气速度(w)与质量比的自然对数(R)的乘积限制。
核聚变长期以来一直被认为是一种理想的太空推进方法,因为它具有极高的燃料比能(比最好的化学燃料高 + 2 # 10 6)和排气速度(+ 4% 的光速,而最好的化学燃料为 + 4 公里/秒)。这种高性能将允许在参与研究人员的一生中快速完成行星际任务以及星际任务。1然而,聚变推进存在两个主要困难:点燃自持聚变链式反应的困难以及反应产生的大量电离辐射,这需要相当大的屏蔽质量来抵御这种辐射。1本摘要介绍了一种独特但众所周知的核物理技术“自旋极化”的能力,它可降低点火要求和航天器必须处理的电离辐射通量。
一枚火箭通常使用一粒 I 型药粒,但另一枚火箭使用了七粒小直径药粒。平稳燃烧的下限压力为 80 atm (1140 psi),但实际设计中使用的燃烧室压力为 120 atm (1700 psi)。在 120 atm 压力下,线性燃烧率为 11 mm/sec 或 0.43 in./sec。燃烧表面与喷嘴喉部面积之比为 400。单位消耗为 18 lb/hr-Ib。相应的有效排气速度为 6400 ft/sec。推进剂的温度极限为 60° 和 -40°C。这些限制由燃烧率设定。计算得出的燃烧室内温度为 2500°C。因此,德国火药的温度极限比该国使用的火药要高。但是,燃烧压力比这里开发的一些火药高得多。
摘要 . 磁等离子体动力 (MPD) 推进器能够使用兆瓦 (MW) 的电力将准中性等离子体加速到高排气速度。这些特性使得此类设备值得考虑用于要求苛刻的长期任务,例如人类对火星或更远距离的探索。由于 MPD 推进器是正在进行的实验研究课题,而不是已开发的推进器,因此在系统和任务级别对其进行评估通常很困难。但是,为了评估 MPD 推进器在后续任务中的效用,需要对性能进行一些充分的表征,或者更确切地说,需要对性能进行预测,并定义系统级别以供分析使用。已经对自场 MPD 推进器的最新物理模型进行了检查、评估和重新配置,以供系统和任务分析师使用。物理模型允许根据可在实验室中测量的物理参数合理预测推进器性能。本文介绍了这些模型及其对未来 MPD 推进器设计的影响。
本文提出了使用硝酸铵(HAN)推进剂进行航天施用的燃烧室的初步研究。燃烧室由两个部分组成,即推力室和收敛性(C-D)喷嘴。燃烧室的设计非常重要,因为在此封闭体积中释放的推进剂中的化学能,即推力室并通过C-D喷嘴部分扩展。因此,必须设计腔室,以提供推进剂反应和释放最大可用能量的必要空间,并且还应防止以热的形式损失能量。应最佳设计C-D喷嘴,以允许将焓的最大转化为动能。因此,推力室和C-D喷嘴以最佳尺寸设计,用于释放热量,以将HAN推进剂的燃烧转换为基于HAN的单核粉推进器的排气速度。在这项工作中,燃烧室,即推力室和C-D喷嘴在16 bar的压力下设计,以产生11 N的推力。进行了11 N分析以显示以11 N推力的燃烧室的压力和温度变化,用于航天器的16 bar的16 bar压力和腔室压力。从分析结果中发现,han+甲醇+硝酸铵+水的推进剂组合的单opellogent发动机适合于态度和轨道控制系统(AOCS)推进器的设计。
我们在此报告了脉冲磁流体等离子枪的初步研究,该枪可根据需要在预填充或气体喷射模式下运行。这些模式通过可调节的推力和比冲实现灵活和响应迅速的性能。使用分子氮推进剂的运行表明,磁流体推进器是极低地球轨道空气收集和阻力补偿的候选技术。通过利用推进剂气体动力学改变推进器内的填充率和流动碰撞性,实现双模式运行。这会导致形成不同的模式,这些模式分别以它们允许的电流驱动的磁流体波为特征,即磁爆燃和磁爆轰。这些模式构成了使用气体动力学实现响应迅速的推进器性能的基础。使用飞行时间发射诊断来表征近场流速,我们发现当气体在推进器中膨胀时,模式之间会发生相对剧烈的转变,在爆燃和爆震状态下排气速度分别在 10 到 55 公里/秒之间。处理后的质量位模拟首次让我们看到了推进器的性能以及比冲和推力之间的权衡。预计脉冲位可调性为 ≏ 22%,在突发模式下运行时推进剂填充分数不同。
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。