安装管道时不会对地面造成大面积破坏。它涉及一台在地下施工的遥控隧道掘进机 (TBM)。微型隧道通常用于较大的项目,如需要在道路或其他基础设施下铺设的下水道和水管,以最大限度地减少对地面的影响和封路的需要。大部分工作将在正常工作时间进行;然而,由于微型隧道施工过程的性质,一旦开始微型隧道施工,就需要连续 24 小时工作,以避免中断并确保操作的完整性。该项目预计开始日期为 2025 年 2 月,预计结束日期约为 2026 年 2 月。将通知卡利登镇,并将向拟议工作区域 500 米半径范围内的所有房产发出公告。豁免详情顾问正在请求批准在该镇噪音条例允许的时间之外执行项目的某些方面。噪音条例禁止在周日和法定假日的晚上 11:00 至早上 6:00 和晚上 8:00 至早上 8:00 之间产生与施工活动相关的噪音。除紧急情况外,该镇的噪音条例不包含豁免程序,因此任何想要在允许时间之外进行与噪音相关的活动的人都需要获得理事会的批准。潜在影响在审查请求和具体位置时,工作人员确定大约 90 处房产可能会受到施工噪音的影响(本报告的附表 A 提供了更多详细信息)。
瑞士汝拉山脉的旧 Belchen 隧道采用钻孔爆破法在膨胀沉积岩(即富含硬石膏的泥灰岩 (Gipskeuper) 和 Opalinus 粘土页岩 (OPA))中开挖。早在 20 世纪 60 年代施工期间,这两种岩层就通过高膨胀压力和隆起对隧道支撑造成了严重损坏,后来这些隧道不得不再次翻新。重要的维护和修理促使我们用隧道掘进机 (TBM) 建造了第三条新的 Belchen 隧道(2016 – 2021 年)。在本研究中,我们展示了在位于新 Belchen 隧道强烈断层的 OPA 段的监测段获取的现场数据集,这些数据集用于研究四年多以来的应力演变和控制机制。主要数据集包括总径向压力、径向应变、岩石含水量、岩石和混凝土温度的时间序列,以及从钻孔日志和三维摄影测量开挖面模型分析中获得的地质结构细节。最后,一系列理想化的数值模拟探索了测量温度变化对测量总压力的影响,证实了温度对与混凝土凝固和季节性气候变化有关的径向压力有很强的影响。我们发现,在我们的监测部分,隧道支撑上的径向压力非常不均匀,即它们介于 0.5 MPa 和 1.5 MPa 之间,并且在开挖 4 年后仍在缓慢增加。测量的压力是旧 Belchen 隧道管中测量压力的 2 到 5 倍,其大小与实验室测试中获得的膨胀压力相似。EDZ 渗透性测量、含水量演变和隧道底板的径向应变数据表明,膨胀过程有助于长期径向压力的积累。热弹性变形和膨胀可能会因构造断层的局部复活和裂缝起始应力水平下的间隙灌浆开裂而叠加。
• 拉索设备系统的运行效率与环境和经济效率 • 拉索台阶爆破和碎裂/背裂控制中的地震效应 • 镐与岩石相互作用时的热行为以及露天采矿机操作参数的优化 • 通过机器振动和粗糙度指数映射分析旋转爆破孔钻机的性能 • 使用马尔可夫链对隧道掘进机进行可靠性建模 • 一种用于脆弱煤矿支护设计的新型岩体评级方法(RMRdyn)。 • 机械化长壁矿井中为防止采煤机过载而对硬砂岩进行可切割性评估(Jhanjhra,ECL)。 • 使用机器学习算法(ANN)对台阶爆破抛掷距离的预测模型, • 估算露天采矿机切割中的产量、镐和柴油消耗以及露天采矿机的本土化。 • 确定顶板岩石的阈值峰值粒子速度,以合理装药炸药,提高煤矿、金属矿和隧道的安全性和生产率 • 增强印度本土金刚石线技术在石材切割中的功能能力。 • 通过全面的列线图进行资产管理,快速评估露天矿工的表现并计划库存。 • 预测坑洞形成的风险、深度和大小,尤其是在浅层煤矿中,以确保安全开采。 • 爆炸压力和基于时间的概念来估计飞石距离,这对于确定矿井中的禁区以确保安全操作至关重要。 • 结合岩石、炸药和爆炸设计参数的模型,用于金属矿的超挖控制。旨在减少因爆炸引起的超挖而导致的矿石稀释。随后还整合了拉力优化。 • 水下钻孔和爆破概念和技术,用于在海洋结构附近进行控制爆破,以完成港口(维沙卡帕特南)的加深和拓宽,以及用于加强贸易的引水渠道。 • 开发了独一无二的圆盘/镐切割测试设施,该设施在 IIT(ISM) 进行设计、制造和测试。 • 虚拟现实矿山模拟器,在 IIT(ISM) 构思、设计和开发了印度唯一的一个。在此基础上创建了全沉浸式采矿方法(地下和露天煤矿开采模式)。
地质学、工程地质学、岩石力学和岩石工程领域已发表论文的一些参考文献 1. Aagaard B.、Grøv E. 和 Blindheim OT (1997):喷射混凝土作为不利岩石条件下岩石支护系统的一部分。国际岩石支护研讨会,地下结构应用解决方案。挪威利勒哈默尔。 2. Aagaard B. 和 Blindheim OT (1999):挪威三条海底隧道穿越极差薄弱区。ITA 世界隧道大会 '99 论文集,奥斯陆,10 页。 3. Aasen O.、Ödegård H. 和 Palmström A. (2013):阿尔巴尼亚加压引水隧道规划。挪威水电隧道 II。出版物编号。 22. 挪威隧道协会,2013 年,第 21-27 页。4. Abbiss CP(1979 年):通过地震勘测和大型水箱试验对 Mundford 白垩的硬度进行了比较。Géotechnique,29,第 461-468 页。5. Abelo B. 和 Schlittler F.(1973 年):为玻利维亚中央系统提供额外电力。Water Power,1973 年 4 月,第 121-128 页。6. Aglawe JP(1998 年):高应力地面地下洞室周围的不稳定和剧烈破坏。加拿大金斯敦皇后大学采矿工程系博士论文。正在进行中。7. Aitcin PC、Ballivy G. 和 Parizeau R.(1984 年):浓缩硅灰在灌浆中的应用。创新水泥灌浆,ACI 出版物 SP-83,1984 年,第 1-18 页。 8. Aksoy OC、Geniş M.、Aldaş UC、Özacar V.、Özer CS 和 Yılmaz Ö.(2012 年):使用经验方法确定岩体变形模量的比较研究。工程地质学 131-132,19-28。 9. Aldrich MJ(1969 年):孔隙压力对 Berea 砂岩受实验变形的影响。美国地质学会通报,第 80 卷,第 8 期,第 1577-1586 页。 10. Aleman,VP(1983 年):悬臂式掘进机的切割率预测,隧道和隧道施工,第 23-25 页。 11. Alemdag S.、Gurocak Z. 和 Gokceoglu C. (2015):一种基于简单回归的岩体变形模量估算方法。J. Afr. Earth Sci. 110,75–80。12. Alemdag S.、Gurocak Z.、Cevik A.、Cabalar AF 和 Gokceoğlu,C. (2016):使用神经网络、模糊推理和遗传编程对分层沉积岩体的变形模量进行建模。工程地质学 203,70–82。13. Allen H. 和 Johnson AW (1936):确定土壤膨胀特性的测试结果。公路研究委员会会议记录,美国 16,220。14. Almén KE.、Andersson JE.、Carlsson L.、Hansson K. 和 Larsson NA。 (1986):结晶岩的水力测试。单孔测试方法的比较研究。SKB 技术报告 86-27。Svensk Kärnbränslehantering AB。15. Alonso E. 和 Berdugo IR (2005):含硫酸盐粘土的膨胀行为。Proc. Int. Conf. Problematic Soils。法马古斯塔,2005 年。