2 贝蒂尔·斯科格。挪威航运管理局,2016 年 1 月 25 日电话交谈。3 卡琳·塞兰德。航道管理负责人,2016 年 1 月 8 日谈话 4 不同海标的光学探测距离取决于各种因素,例如不同天气条件下的形状、颜色和能见度、光照条件、海标的背景站立和观察者的视线水平(IALA,2012)。
随着降噪技术的发展,潜艇的噪声越来越小,来自壁面或螺旋桨的声发射也越来越小,声发射减小,探测距离缩短,被动声纳越来越难以探测到潜艇,尤其在海上稳定时,被动声纳更是完全无用武之地。多基地声纳是一种可以弥补这一不足的有力技术。多基地声纳由声发射部件和分布在空间不同位置的声接收器等部分组成。声发射部件是向空间发射声能的声源,声接收器是用于收集来自不同位置的声反射的被动声纳。由于接收器静默地静止在任何可能的位置,敌方不可能找到接收器的确切位置,从而给敌方的对抗和规避带来困难。它具有掩蔽性好、抗干扰能力强、容易实现和优化、机动灵活、作用距离远、定位精度高等优点,非常适合于吊放声呐的探测应用和舰机联合潜艇探测应用。
摘要:为降低环境对探测精度和灵敏度的影响,满足隐蔽性、轻量化的要求,提出一种基于光电复合传感器的飞行金属物体探测技术。该方法首先分析目标特点和探测环境,然后对典型飞行金属物体的探测方法进行比较分析。在传统涡流模型的基础上,研究设计了满足飞行金属物体探测要求的光电复合探测模型。针对传统涡流模型探测距离近、响应时间长的问题,通过优化检测电路和线圈参数模型,提高涡流传感器的性能以满足探测的要求。同时,为了满足轻量化的目标,设计了一种适用于飞行金属体的红外探测阵列模型,并基于该模型进行了复合探测仿真实验。结果表明,基于光电复合传感器的飞行金属体检测模型满足飞行金属体的检测距离和响应时间的要求,为探索飞行金属体的复合检测提供了途径。
摘要:底栖海洋生物利用一系列防御和攻击机制来影响在坚硬的海洋基质上对空间的竞争。石珊瑚的清扫触手是竞争中使用的可诱导攻击性器官,但它们也可能起到先发制人的防御功能。红海北部埃拉特的脑珊瑚 Platygyra daedalea 中约有一半群落拥有清扫触手,其中许多并不朝向邻近的珊瑚。这些随机方向的清扫触手可能是为了探测距离群落 >5 厘米处珊瑚的定居或前进。在距离 P. daedalea <5 厘米的珊瑚群落中,约 43% 的珊瑚群落朝向相互作用区域出现组织损伤。受损最严重的邻近珊瑚属于 Favites 和 Leptastrea 属,而 Millepora 和同属 Platygyra 群落的受损程度明显较小。随着与 P. daedalea 距离的增加,邻近珊瑚群落的组织损伤显著减少。脑珊瑚上清扫触手的存在与群落直径显著相关,但与邻近群落的数量无关。埃拉特的 P. daedalea 攻击性触手长度为 5.3 ± 3.0 厘米,比之前报道的该属成员的长度要长。在实验室条件下,在与常见的块状珊瑚 F. complanata 群落初次接触后约 30 天,P. daedalea 群落上会长出清扫触手,在约 50 天时它们的长度达到最大,约为 6.5 厘米,比进食触手长 10 倍。在 2 个月内,清扫触手对 F. complanata 群落造成的组织损伤不断增加。在形态发生过程中,触手的尖端与柄部的比例和外胚层厚度会加倍,表明顶球发育,但触手柄的最大宽度不会改变。扫触手似乎是石珊瑚中常见的一种对抗机制,也可能是一种防御机制,使一些物种能够在拥挤的珊瑚礁栖息地中存活下来。