2 主要宽带接入网技术概述 5 2.1 光纤同轴混合网(HFC) .................................................................................................................................................................................................. 5 2.2 数字用户线(DSL) .................................................................................................................................................................................................................................. 8 2.3 光纤到户(FTTP) .................................................................................................................................................................................................................. 8 2.3 光纤到户(FTTP) .................................................................................................................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 19 2.7 无线网络。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 20
无线通信得到了快速发展,尤其在更高的数据速率、更智能的设备和多样化的应用方面。此外,与 4G 技术相比,5G 使用高频段,这使得节点更加密集。为了在无线接入网(RAN)中实现最佳性能并满足不断增长的移动用户的需求,需要构建数百万个基站(BS)。从 2007 年到 2015 年,发展中地区的基站数量增加了 200 多万,数据传输速率每五年增加十倍 [1]。然而,预期的流量负载激增需要 5G 新无线电实现更密集的网络部署和网络致密化,这会导致更高的能耗。大部分能量被典型 RAN 中的基站消耗。然而,随着更多具有大规模多输入多输出(MIMO)的基站的部署,NR 中的能源效率变得更加紧迫和具有挑战性。
AAS 有源天线系统 AAU 有源天线单元 AC 交流电 BCCH 广播控制信道 BH 忙时 BS 基站 BSC 基站控制器 BTS 基站收发站 CA 载波聚合 CATR 紧凑型天线测试范围 CCE 控制信道元素 CCH 公共信道 CCPCH 公共控制物理信道 CP 循环前缀 CPICH 公共导频信道 CS 电路交换 DC 直流 DL 下行链路 DPCH 专用物理信道 DUT 被测设备 EDGE 增强数据速率 GSM 演进 EIRP 等效全向辐射功率 EPRE 每个资源元素的发射功率 FDD 频分双工 FL 满载 FR1 频率范围 1(450 - 6 000 MHz),为 NR 定义 FR2 频率范围 2(24 250 - 52 600 MHz),为 NR 定义 GERAN GSM/EDGE 无线接入网 GP 保护期 GSM 全球移动通信系统 GUM 指南测量不确定度的表达
摘要 开放性和智能化是下一代无线网络(例如超 5G 和 6G)要引入的两个支持特性,以支持服务异构性、开放硬件、最佳资源利用和按需服务部署。开放无线接入网 (O-RAN) 是一种很有前途的 RAN 架构,它通过虚拟化网元和定义明确的接口实现开放性和智能化。虽然在 O-RAN 中部署人工智能 (AI) 模型变得越来越容易,但长期被忽视的一个重大挑战是在现实环境中全面测试它们的性能。本文介绍了一个通用的自动化、分布式和支持 AI 的测试框架,以测试部署在 O-RAN 中的 AI 模型的决策性能、漏洞和安全性。该框架采用主参与者架构来管理多个终端设备进行分布式测试。更重要的是,它利用人工智能自动智能地探索 O-RAN 中 AI 模型的决策空间。支持软件仿真测试和软件定义无线电硬件测试,可快速进行概念验证研究和无线研究平台的实验研究。
微波光子信号产生技术因其在宽带无线接入网、传感器网络、雷达、卫星通信、仪器仪表等领域的潜在应用而受到广泛关注。产生微波光子信号的技术可分为直接调制、光外差技术、外部调制、锁模半导体激光器、光电振荡器和一周期(P1)振荡[1]-[6]。采用外部光注入的半导体激光器可以表现出各种动力学状态,例如稳定锁定、P1振荡、二周期振荡、准周期振荡和混沌涨落。其中,P1动力学发生在稳定锁定被打破并且系统开始经历霍普夫分岔[7]时,其中会产生两个主频率,一个来自光注入,另一个是红移的腔频率。显然,利用P1动力学中两个主频率的拍频可以产生微波光子信号。与其他技术相比,基于 P1 振荡的微波光子信号产生具有许多优势,例如接近单边带 (SSB) 频谱、低成本、全光学元件配置以及远离其弛豫谐振频率的微波频率可广泛调谐 [8],[9]。基于 P1 振荡的微波光子信号产生主要在以下几个方面进行研究:
随着扩展现实、全息远程呈现和无线脑机接口等应用对当前网络能力提出挑战,用户对网络通信基础设施的需求从未如此强烈。开放式 RAN (O-RAN) 对于支持 6G 及更高版本的新用途和预期用途至关重要。它促进开放性和标准化,通过分解无线接入网 (RAN) 组件提高灵活性,通过软件定义网络 (SDN)、网络功能虚拟化 (NFV) 和云等技术支持可编程性、灵活性和可扩展性,并通过 RAN 智能控制器 (RIC) 实现自动化。此外,在 RIC 中使用 xApps、rApps 和人工智能/机器学习 (AI/ML) 可以高效管理复杂的 RAN 操作。然而,由于 O-RAN 的开放性及其对异构系统的支持,出现错误配置问题的可能性变得至关重要。在本文中,我们将全面分析 O-RAN 中潜在的错误配置问题,包括集成和操作、SDN 和 NFV 的使用,特别是 AI/ML 的使用。本文研究了使用 AI/ML 识别这些错误配置的机会。本文提供了一个案例研究,以说明 xApps 之间冲突的策略对最终用户的直接影响,以及针对此问题的潜在 AI/ML 解决方案。本研究首次分析了 AI/ML 对 O-RAN 中错误配置挑战的影响。