1 阿尔托大学微纳米科学系,Micronova,Tietotie 3,02150,埃斯波,芬兰 2 联邦物理技术研究院,Bundesallee 100,38116 不伦瑞克,德国 3 MIKES,Tekniikantie 1,FI-02150,埃斯波,芬兰 电子邮件:novikov@aalto.fi,alexandre.satrapinski@mikes.fi 摘要 — 基于在 SiC 上生长的外延石墨烯膜的量子霍尔效应 (QHE) 器件已被制造和研究,以开发 QHE 电阻标准。霍尔器件中的石墨烯-金属接触面积已得到改进,并使用双金属化工艺制造。测试器件的初始载流子浓度为 (0.6 - 10)·10 11 cm -2,在相对较低的 (3 T) 磁场下表现出半整数量子霍尔效应。光化学门控方法的应用和样品的退火为将载流子密度调整到最佳值提供了一种方便的方法。在中等磁场强度 (≤ 7 T) 下对石墨烯和 GaAs 器件中的量子霍尔电阻 (QHR) 进行精密测量,结果显示相对一致性在 6 · 10 -9 范围内。索引术语 - 外延石墨烯、石墨烯制造、接触电阻、精密测量、量子霍尔效应。
摘要:Schottky-Barrier-Far van der Waals(VDW)金属 - 半导体异质结构具有很大的潜力,可以克服具有出色设备功能的电子设备的接触电阻问题。然而,设计此类异质结构的长期挑战是在异性结界找到具有完美匹配的电子能级和带对齐方式的材料。为了应对这一挑战,我们提出了一种新型的VDW异质结构,由二维pentagonal pentagonal nigzenide(penta-nin 2)[ACS Nano 15,13539-13546-(2021)](2021)]和Biphenylene Network(BPN)(BPN)[Science 372,852-852-856)(2021-2021)(2021)(2021)在异质结界面的通道和金属电极材料。基于第一原理的计算,我们发现垂直堆叠的五角星2和bpn可以形成相应的异质结构,而晶格不匹配可忽略0.15%,并且它们的内在电子特征是良好的,形成了VDW接触。更有趣的是,我们表明,这种堆叠导致垂直界面处的无孔式伴侣P型触点,这表明横跨异质结的无电阻孔传输。与传统的基于五角大楼的VDW堆栈不同,异质结构和半导体通道的电子能带在异质结的横向界面处很好地对齐。这些结果表明,Penta-Nin 2 /BPN可能是开发低电阻和高速野外效应晶体管和光电设备的有前途的候选人。
摘要:半导体需要稳定的掺杂才能应用于晶体管、光电子学和热电学。然而,这对于二维 (2D) 材料来说是一个挑战,现有的方法要么与传统的半导体工艺不兼容,要么会引入时间相关的滞后行为。本文我们表明,低温 (<200 ° C) 亚化学计量 AlO x 为单层 MoS 2 提供了稳定的 n 掺杂层,与电路集成兼容。这种方法在通过化学气相沉积生长的单层 MoS 2 晶体管中实现了载流子密度 >2 × 10 13 cm − 2、薄层电阻低至 ∼ 7 k Ω / □ 和良好的接触电阻 ∼ 480 Ω · μ m。我们还在这个三原子厚的半导体上实现了创纪录的近 700 μ A/μ m (>110 MA/cm 2 ) 的电流密度,同时保持晶体管的开/关电流比 >10 6 。最大电流最终受自热 (SH) 限制,如果器件散热效果更好,最大电流可能超过 1 mA/μ m 。这种掺杂的 MoS 2 器件的电流为 0.1 nA/μ mo,接近国际技术路线图要求的几个低功率晶体管指标。关键词:2D 半导体、电流密度、掺杂、高场、自热、MoS 2 、Al 2 O 3 T
复合聚合物陶瓷电解质结合了聚合物和陶瓷的优点,在高能量密度锂金属电池中表现出了巨大的潜力。然而,低离子电导率和与电极的接触不良限制了它们的实际应用。在这项研究中,我们开发了一种高导电性和稳定性的复合电解质,该电解质具有高陶瓷负载量,可用于高能量密度锂金属电池。该电解质通过原位聚合生产,由聚偏氟乙烯/陶瓷基质中的一种名为聚-1,3-二氧戊环的聚合物组成,具有出色的室温离子电导率(1.2 mS cm − 1),并且在 1500 小时内与锂金属具有高稳定性。在 Li|电解质|LiFePO 4 电池中测试时,该电解质在室温下具有出色的循环性能和倍率能力,在 1 C 下 500 次循环后的放电容量为 137 mAh g −1。此外,该电解质不仅表现出 0.76 的高 Li + 迁移数,而且显着降低了与电极的接触电阻(从 157.8 降至 2.1 𝛀)。当在具有高压 LiNi 0.8 Mn 0.1 Co 0.1 O 2 正极的电池中使用时,可实现 140 mAh g −1 的放电容量。这些结果展示了复合聚合物陶瓷电解质在室温固态锂金属电池中的潜力,并提供了设计具有电极兼容界面的高导电性陶瓷内聚合物电解质的策略。
在MOS 2效应晶体管中,与迁移率或数量依赖性关系相关的电流或电压闪烁是由低频噪声的特征。这种噪声通常可用于评估基于MOS 2的电子设备的应用限制。在这项工作中,通过化学蒸气沉积(CVD)生长的单晶双层MOS 2的低频噪声特性是系统地进行投资的,并发现与基于单层MOS 2通道的低频噪声MOS 2相比,可提供显着的性能改进。在F¼100Hz时,归一化的漏极电流功率频谱密度(S I / I D 2)为2.4 10 10 Hz 1和BiLayer和Monolayer MOS 2转换器分别为3.1 10 9 Hz 1。McWhorter的载流子数量流量模型可以准确地描述1晶体管类型,这表明载流子捕获和通过介电缺陷捕获和去捕获是CVD MOS 2晶体管中1/ F噪声的主要机制。此外,在VBg¼3V时,通过使用后场电压降低了双层MOS 2晶体管的接触电阻,从而在VBg¼3V时实现了最小的WLS I / I D 2的3.1 10 10 L m 2 / hz(其中W是栅极宽度,L是栅极长度)。这些结果表明,CVD双层MOS 2是未来大规模2D-Sementemondoctor的电子应用,具有提高噪声性能的有前途的候选者。
为了提高晶体管的密度、提高性能、降低功耗和降低每个晶体管的成本,人们对晶体管尺寸的要求推动了接触多晶硅间距 (CPP) 的缩小,如图 1 和图 2 所示,这反过来又需要缩小栅极长度以释放更多空间来降低接触电阻。由于金属栅极图案的空间有限,RMG 的持续缩小对 7nm 及更高技术的多 Vt 提出了挑战。此外,自对准接触 (SAC) 成为未来技术节点上提高器件成品率的关键要素。因此,需要采用简化的 RMG 堆叠集成方案来确保良好的栅极凹槽控制和均匀的 SAC 封装。由不同栅极金属厚度 (金属多 Vt) 实现的多 Vt 选项将在大幅缩小间距时面临可扩展性挑战。在这项工作中,我们提出了一种无体积多 Vt 解决方案来定义具有不同偶极子层厚度的所有 Vt 类型。氧化物偶极子层与基于 SiOx 的界面层 (IL) 相互作用,产生 Vt 偏移,伴随其基团电负性差异 [6]。所提出的方案被证明与双 WFM 工艺兼容,并且由于其体积小,可适用于高度缩放的设备和新颖的设备架构。在同一芯片上集成多个偶极子厚度非常具有挑战性,因为偶极子厚度非常薄,通道可能会受到图案损坏。在本文中,我们
应力测试是开发出,该测试的重点是质子交换膜电解的阳极催化剂层降解,这是由于模拟的起步操作而引起的。ex exte测试表明,由于近表面还原和循环到高电位时,重复的氧化还原循环会加速催化剂溶解。相似的结果发生在原位,其中发现细胞动力学(> 70%),虹膜从阳极催化剂层迁移到膜中。但是,观察到其他过程,包括虹膜氧化的变化,较薄和更密集的催化剂层的形成以及从运输层迁移的铂。还发现了增加的界面弱化,通过增加催化剂层的接触电阻和分离部分,从而增加了欧姆和动力学损失。反复的水流关闭进一步加速性能损失,并增加界面和催化剂层内的撕裂和分层的频率。这些测试应用于几种商业催化剂,在其中观察到含有钌或高金属含量的催化剂的损失率更高。这些结果表明有必要了解如何发生操作停止,以确定损失机制的加速方式以及制定限制绩效损失的策略。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad2bea]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
二维材料的合成需要较高的工艺温度才能获得较高的材料质量,这阻碍了在器件晶圆上直接合成。因此,制造需要将二维材料从专用的生长衬底转移到器件晶圆上。本论文介绍了一种通过晶圆键合转移二维材料的通用方法。该方法的目标是在半导体代工厂的生产线后端集成到电子电路上。该方法的变体是悬挂二维材料的自由悬挂膜,并将层堆叠成二维材料异质结构。二维材料的图案化是器件制造的基本步骤。然而,标准的光刻方法会导致保护性抗蚀剂残留,从而降低器件性能。本论文介绍了一种非接触、无抗蚀剂的方法,通过激光直写和现成的系统以纳米级精度对二维材料进行图案化。金属电极和二维材料之间的电接触电阻显著影响器件的性能。本论文研究了湿度对石墨烯接触电阻和薄层电阻的影响。这一见解对于在无封装或密封包装的环境中操作至关重要。多层铂硒化物 (PtSe 2 ) 是一种半金属二维材料,可在 450 ◦ C 以下合成。本论文展示了通过在器件基板上直接生长将 PtSe 2 光电探测器与硅波导集成。光电探测器在红外波长下工作,这对于集成光子电路很有前景。
摘要:在这项工作中,我们报告了使用镍(Ni)和金(AU)薄层关联,退火后层分布在P型GAN上形成高质量欧姆接触的重要性。研究了标准gan/ni/au及其反向,p型gan上的gan/au/ni均已被研究。AU/NI堆栈在这项研究中表现出最有希望的结果。虽然标准的Ni/au接触表现出准线性电流(I-V)的特征,但其对应物Au/Ni表现出纯欧姆行为,具有特定的接触电阻(ρC)低至2.0×10-4Ω.cm²,在500分钟的高空下均为500分钟后,均高达2.0×10-4Ω.cm²。X射线衍射(XRD)和透射电子显微镜(TEM)分析表明,在退火过程中,层的不完全反转导致GAN/Ni/ni/au/niO堆栈,这解释了为什么Ni/Au触点显示出较低的电性能。另一方面,对于在相同条件下退火的AU/NI触点,可以将优秀的结果归因于(i)(i)与GAN界面处的金层存在,从而使Gallide固体溶液(GA-AU)和(ii)形成了NIO直接与P-GAN接触。已知这两种机制会导致在P型GAN上形成良好的欧姆接触。这些结果表明,尽管Ni/Au是P-GAN层的标准接触,但相反的堆栈(AU/Ni)提供了最佳的欧姆行为。这对于实现gan功率二极管或晶体管的最佳性能至关重要。
在微电子领域,铜线越来越多地代替金线用于制作键合互连。在这些应用中使用铜有许多潜在的好处,包括更好的电气和机械性能以及更低的成本。通常,导线键合到铝接触垫上。然而,人们对导线/垫界面处 Cu/Al 金属间化合物 (IMC) 的生长了解甚少,如果过度生长,会增加接触电阻并降低键合可靠性。为了研究 Cu 球键合中 Cu/Al IMC 的生长,在 250 C 下高温老化长达 196 小时,以加速键合的老化过程。然后记录了 Cu/Al IMC 的生长行为,并获得了 6.2 ± 1.7 · 10 14 cm 2 /s 的 IMC 形成速率。除了垂直于键合界面的常规 yz 平面横截面外,还报告了平行于界面层的 xy 平面横截面。在光学显微镜下,在球键合 xy 平面横截面上,Cu/Al 界面处有三层 IMC 层,它们的颜色不同。微 XRD 分析结果证实,Cu 9 Al 4 和 CuAl 2 是主要的 IMC 产物,而发现第三相,可能是 CuAl。在老化过程中,IMC 膜从键合外围开始生长,并向内传播至中心区域。随后,随着老化时间的增加,在 IMC 层和 Cu 球表面之间观察到空洞,也是从键合外围开始。空洞最终连通并向中心区域发展,导致球和金属间层之间几乎完全断裂,这是 81 小时后观察到的。2007 Elsevier Ltd. 保留所有权利。