摘要:目前,在欧洲的几条铁路网络中,使用传统的直流电气化系统,既无法增加交通量,也无法使机车以标称功率运行。轨道旁储能系统 (TESS) 可以作为新建变电站的替代解决方案。TESS 限制接触线电压下降并平滑高峰交通期间吸收的功率。因此,可以在限制成本和环境影响的同时提高电力系统的效率。本文提出了一种基于全 SiC 隔离 DC/DC 转换器的 TESS 新拓扑,该转换器与锂离子电池和电流隔离相结合,为运行安全提供了重大优势。发生故障时,转换器的输入和输出端子将电气分离,并且接触线电压绝不会直接施加到电池上。此外,使用 SiC MOSFET 可以获得具有高开关频率的出色效率。本文第一部分介绍了基本 TESS 模块的主要特性,第二部分针对 1.5 kV 直流线路的典型情况提出了一种尺寸确定方法,该方法表明了使用 TESS 增强电源的局限性。最后,介绍了基本模块原型的实验结果。
简介在过去的五年中,光伏行业见证了转换效率不断提高的发展势头。长期以来,该行业的主力一直是铝背面场 (BSF) 太阳能电池,但现在它正被钝化发射极和背面电池 (PERC) 所取代,PERC 可使生产中的转换效率超过 21%,在临近生产环境中的转换效率高达 23.6% [1]。对这些太阳能电池的详细损耗分析表明,金属/半导体触点处的少数电荷载流子复合是主要的损耗机制 [2]。通常采用两种策略来减轻复合损耗:(1) 通过扩散或合金化(例如选择性发射极或铝背面场)在金属触点下方形成重掺杂的 c-Si 区域,以减少界面处的少数电荷载流子;(2) 减少金属化面积分数。后一种策略的一个主要例子是 PERC 结构,其特点是具有局部 Al 接触的介电背面钝化,从而不仅增加了开路电压 (V oc ),而且还增加了短路电流密度 (J sc )(因为改善了红外光的背面反射)。然而,必须通过调整背面接触线(或点)的间距和基极电阻率来仔细平衡 V oc 增益和填充因子 (FF ) 损失。因此,克服这一限制的更好策略是钝化接触,它可以抑制少数电荷载流子复合并实现有效的多数电荷载流子传输。最著名的例子是 a-Si:H/c-Si 异质结(通常称为 HIT、HJT、SHJ)太阳能电池,
管理概念:首先,控制和封闭的水吸收和凝结成纳米级毛孔;其次,滴结合。为了研究两者,陶瓷介孔薄膜是有趣的模型系统,其制造[4]和功能性[5]在过去25年中已深入研究。[6]最近对此类膜或分离层的水操作进行了深入研究。[7]但是,与平面和结构化表面相比,在中孔中控制润湿性以及水吸收,凝结和落水的可能性较少得多,并且所研究的情况较低。近年来,关于表面润湿性的主要兴趣是超级恐惧症,超级恐惧症或非染色表面的发展。[8]所使用的方法通常受到天然发生的表面的启发,例如莲花叶,投手植物或雾虫,并且始终基于在微观和纳米尺度上与相应疏水表面化学的表面结构的组合,[8b,9]或与疏水性润滑剂相应地包含在一个粒子中。[10]一个挑战是在切换响应函数组后,润湿性的变化足够大。[9b]通过更改表面上的滴度和接触线的接触角,这对于诸如降落合并之类的应用至关重要,例如,探索可润湿性的这种变化可用于从湿度发电的背景下使用。[15]液滴的轻驱动运动也提供了控制基于液滴的过程。[11]常见应用之一是自算基底物,该基材收集凝结的液滴并将其从结构化底物中删除。[12]在大多数情况下,宏观[13]和微结构[14]表面用于增强自我清洁过程。在自我清洁或雾化过程中,在结构化表面上的滴相结合是速率控制过程之一。[16]使用轻驱动的滴水结合,将允许在收集水或基本研究(如未受干扰的(光诱导的)滴水结合)的过程中使用无接触式的落聚结。可以通过利用可切换极性的官能团或设计微级或纳米级结构来改变刺激性基团在刺激影响时改变。[17]经常使用的刺激是轻的,因为它可以从外部和逐渐调节。一个非常有趣的分子,对光的反应是螺旋形。正如Klajn等人所审查的那样,Spiropyran是许多
一种液体排斥表面,即光滑液体注入多孔表面(SLIPS),通过动态液体/液体/蒸汽接触线运动来排斥液体。[6] 所需的光滑液体必须与接触的液体介质不混溶且不会被其浸出,以避免润滑剂损失和污染。确保此类涂层的长期坚固性及其润湿性能仍然具有挑战性。[7] 因此,需要其他方法来创建具有良好液体排斥性的表面。提出了一种替代策略,即将柔性大分子刷(如 PDMS 和全氟聚醚)共价连接到光滑表面上以排斥液体。[8] 这个想法是,柔性大分子的高流动性使它们能够作为具有广泛表面张力的液体的液体状润滑层。[8c] 由于与表面的共价连接,这些分子结构不会被接触液体溶解或取代。具体而言,涂覆有PDMS刷的表面表现出优异的耐高温处理、光降解甚至刮擦性能。[8a,9] 此外,由于涂层只有几纳米厚,它们是透明的,不影响涂层表面的外观,对导热性影响也很小。PDMS刷的制备可以追溯到1970年,当时Vermeulen等人通过气相反应16小时在玻璃表面沉积了低液体粘附性的PDMS刷层。[10] 然而,从表面接枝聚合物通常基于复杂且耗时的制备程序,限制了它们在实际应用中的使用。McCarthy等人系统地研究了在表面制造PDMS刷的新策略。[11] 他们提出使用二甲基二甲氧基硅烷(DMDMS)作为单体,在硫酸作为催化剂的情况下聚合PDMS刷。 [8a] 用大量溶剂冲洗表面以去除残留的低聚物和酸,将反应溶液(包括 DMDMS、硫酸和异丙醇)干燥一段时间后,在硅(或玻璃)表面形成具有低液体粘附性的 PDMS 刷。与 McCarthy 的方法相比,我们开发了一种更简单的方法,无需催化剂即可将 PDMS 刷接枝到表面上。此外,我们还表征了 PDMS 刷在胶带剥离、超声处理、滴落滑动腐蚀、加热、紫外线降解、酸腐蚀等条件下的稳定性。McCarthy 等人仅研究了在 100°C 下加热的影响。