受自然界生物运动的启发,在过去的十年中对多机构系统(MASS)的合作运动进行了广泛的研究(Wang等,2017,2019; Wang and Sun,2018; Wang等,2020b; Koru等,2021年; Wang and Sun,2021年)。与单个代理相比,网络质量具有快速命令响应和鲁棒性的优势。由于分布式网络计算系统具有强大的可伸缩性和快速计算速度的特征,对多机构系统的分布式合作控制问题的研究已吸引了控制科学家和机器人工程师在许多情况下的广泛应用的越来越多的注意力,例如移动机器人,例如移动机器人(Mu等,2017; Zhao et al。 2016; Li等人,2019年)和航天器(Zhang等,2018; 2021a)。与开关拓扑合作控制与开关拓扑合作的经典框架。Ren和Beard(2005)进一步放松了Olfati-Saber和Murray(2004)给出的条件,这些条件就线性质量的共识提出了一些新的结果。实际上,有必要在离散时间内调查多代理系统的控制问题,而大多数计算机系统是离散的结构。在Liang等人的研究中。 (2017),研究了不均匀离散时间线性多代理的合作遏制控制问题,并设计了一种新型的内部模式补偿器来处理系统动力学的不确定部分。 (2018)。 su等。 多代理共识在Liang等人的研究中。(2017),研究了不均匀离散时间线性多代理的合作遏制控制问题,并设计了一种新型的内部模式补偿器来处理系统动力学的不确定部分。(2018)。su等。多代理共识Liang等人在研究中给出了基于线性基质不等式(LMI)的离散时间MAS分散共识问题的解决方案方法。LV等人讨论了基于终端迭代学习框架的多代理共识控制问题。(2018)提出了基于时间变化控制输入的自适应控制方法以改善系统的控制性能。(2019)提出了一种基于低增益反馈方法和修改的代数riccati方程的分布式控制算法,以实现离散时间质量质量降低输入饱和条件的半全球共识。
核心必修模块(所有核心模块均由伦敦大学学院布卢姆斯伯里校区的材料发现研究所教授) NSCI0009:先进材料的微观结构控制(15 个学分) 本课程旨在让来自不同科学背景(材料、化学、物理、工程、化学工程和其他相关科学和工程学科)的学生发现他们先前的知识可以应用于材料科学,从而产生良好的效果,并使该学科及其行业受益。为了实现这一目标,本课程强调控制性能的微观结构因素,并展示开发此类微观结构的策略。本课程还旨在为希望探索如何将他们的学科特定技能应用于更广泛的材料科学背景的科学和工程学科学生提供学术拓展。该模块还旨在通过材料表面处理、增材制造和严重塑性变形方面的最新技术进步案例研究来巩固对微观结构控制策略的理解和知识,并让学生掌握可转移技能,以推进材料加工和制造技术,开发新一代先进材料。评估:第一学期,40% 课程作业(问题表和短文)和 60% 笔试 NSCI0012:材料设计、选择和发现(15 学分) 本模块旨在让学生掌握应用和市场驱动场景中材料选择的原则和过程的一般知识。特别是,将详细讨论 MF Ashby 开发的材料选择规则和相应概念(例如,材料指数和材料性能图表以及 Ashby 图)。通过小组辅导中的案例研究讨论,将理论付诸实践,巩固对这些阈值概念和技能的理解。它还旨在为具有广泛科学/工程背景的学生提供材料选择和产品设计背景下的材料科学基础知识。特别是,将讨论工程材料的结构-性能关系(包括相图和转变)。该模块重点介绍材料选择和产品设计中的变化力量(例如新兴的能源和环境限制),以及新材料和相关技术如何为开发创新解决方案以满足全球需求提供机会。评估:第一学期,小组设计项目形式,两次演示(创意推介和最终设计演示)以及最终报告(每名学生 2,000 分)。
由于很难获得柔性动力学,因此提出了对未知扰动具有鲁棒性的控制器 [6]。在机械手操纵过程中实现姿态控制仍然是一项具有挑战性的任务,因为除了外部扭矩/力之外,机械手运动和附加物振动也可能导致不良的底座旋转。已经研究了通过工作空间调整策略 [7] 或同时控制全局质心和航天器姿态 [8] 来有效使用推进器来补偿机械手运动。同样,当仅控制机械手时,已经开发了反应零空间控制以减少机械手和航天器底座之间的相互作用 [9]。由于振动部分是由于机械手运动引起的,因此基于机械手刚体动力学和附加物柔性动力学之间的耦合因素,已经提出了一种控制策略来抑制振动 [10] 或优化机械手轨迹以最大限度地减少底座扰动 [11]。此外,未来的任务预计会有更长的寿命。除了飞行空间机械手的高效推进剂消耗策略外,一个有意义的延长寿命的方法是使用带电气的动能矩交换装置,这种装置被称为旋转自由浮动航天器机械手[12]。利用动能矩交换装置的优点来控制机械手引起了人们对处理相对较大质量和惯性的操纵的兴趣,比如在捕获或部署场景中。通过运动学指标,在控制机械手的同时控制航天器姿态可以提高其可操纵性[13]。已经研究了结合反作用轮和控制力矩陀螺仪来在机械手运动期间保持卫星平台固定[14]。本文旨在开发在轨部署应用中在结构扰动下航天器底座和机械手的通用控制。在考虑不同机械手配置的系统动量分布时,开发通用控制的兴趣凸显出来 [13]。本文的贡献在于将柔性动力学与刚性动力学相结合,从而可以开发扩展状态观测器来改善控制性能,而不是刚性系统的未知扰动观测器 [6]。然后使用 NDI 对系统进行解耦和线性化,包括对振动扰动和航天器漂移的估计。此外,还针对实际的大尺寸系统开发了控制律和观测器的综合。