许多水泥厂客户都在寻找一种完全自动化的解决方案,以确保最佳性能并节省劳动力和停机时间。然而,直到最近,唯一的选择是集成来自不同制造商的组件来创建一个系统,或者选择一个控制能力有限的系统。我们最近推出的 AutoJet 气体调节系统提供了另一种选择——它包括一个专有控制系统,旨在最大限度地提高 FloMax 喷嘴的性能并提供全面的系统自动化。它在许多其他方面也是独一无二的——它们都加在一起实现了更有效、更高效的气体冷却。
许多水泥厂客户都在寻找一种完全自动化的解决方案,以确保最佳性能并节省劳动力和停机时间。然而,直到最近,唯一的选择是集成来自不同制造商的组件来创建一个系统,或者选择一个控制能力有限的系统。我们最近推出的 AutoJet 气体调节系统提供了另一种选择 - 其中包括一个专有控制系统,旨在最大限度地提高 FloMax 喷嘴的性能并提供全面的系统自动化。它在许多其他方面也是独一无二的 - 它们都加起来实现了更有效、更高效的气体冷却。
注释:SL = 海平面。所有负载体积的控制能力:静态:0 至 125 立方英寸(2 升),皮托管:0 至 80 立方英寸(1.3 升)。可接受更大体积 1 可在小系统体积中实现高速率 2 1,500 英尺/分钟以上为 10,3,000 英尺/分钟以上为 25,6,000 英尺/分钟以上为 50,12,000 英尺/分钟以上为 100 3 应要求激活,低于 200 节 4 0.0001 inHg 由用户设置 - 仅限 inHg 单位模式 5 总精度包括测量压力的所有计量不确定度贡献。计量数据完全可追溯至 NIST。
摘要 本研究调查了安装在螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统在净推力损失最小的情况下支持前向力。矢量系统本身既可以放置在独立螺旋桨配置中,也可以放置在机翼内螺旋桨配置中。代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。灵敏度分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显着改善。实现了推力矢量控制,随后俯仰力矩发生变化,在两种螺旋桨俯仰情况下,叶片偏转角逐渐增加:75° 和 90°。标准 90° 俯仰方向的集成式机翼螺旋桨系统的风洞试验结果显示,在前进比低于 0.3 时,推力矢量控制成功,这对于大多数相关应用而言都是实用的;螺旋桨叶片系统的 75° 俯仰方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式情况具有更好的推力矢量控制能力。致谢 衷心感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究计划提供的支持。另一位重要的捐助者蔡杰龙先生(Jacky)对本作品在整个过程中给予的持续指导深表感谢。
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。
图 4-1。有风力发电和无风力发电时的每小时负荷形状 ................................................79 图 4-2。电网运行的时间尺度 ..............................................................................80 图 4-3。风对负荷跟踪要求的影响 ......................................................................81 图 4-4。GE 涡轮机频率响应 .............................................................................83 图 4-5。Vestas 风力涡轮机控制能力 ......................................................................84 图 4-6。GE 风力发电厂控制 .............................................................................84 图 4-7。风力发电对系统动态性能的影响 .............................................................85 图 4-8。年每小时容量系数 .............................................................................91 图 4-9。1975 年至 1999 年的年度输电投资和
北约机载预警和控制系统 (AWACS) 机队于 2035 年退役后,该机构将具备监视和控制能力。此外,通过支持 90 多个武器系统、管理 170 多个项目、交付三架多国多用途加油运输 (MRTT) 飞机、支持联盟地面监视 (AGS) 以及交付空中、陆地和海上系统,扩大了客户群。改善资产管理、编纂和参考现代化的举措,以及向自动化物流管理系统迈进的动力,展示了该机构的适应能力,为客户创造了更多的物有所值,所有这些都促成了该年 LCM 领域的 17 亿欧元业务量。
苏联的大部分太空计划通常不对外公开。正如本出版物所记录的,苏联在太空领域的大部分努力都用于军事目标。自太空时代开始以来的过去三十年里,苏联一直在稳步努力获得太空军事能力。由于西方民主国家,特别是美国,将其大部分太空资源和技术用于其他目标,有时缺乏明确的目标,我们让苏联危险地接近实现其太空军事目标。苏联人有条不紊地设计了他们的太空系统以在太空中作战。30 多年来,莫斯科一直在稳步努力获得对太空的军事控制能力。正如下面的页面所示,苏联的努力确实令人印象深刻。例如: