使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,这种方法还不够,并且必须通过外部控制修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的有效性[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最后时间示意性地差异以最大化(或最小化)。除其他外,我们可以提到量子渔民信息(QFI)[10,15–30],选择性控制方案[31-39]和指纹识别方法[40-43]的最大化。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与特定可观察的特定可观察的方差成正比,该方差与哈密顿量的部分衍生物相对于参数进行估计。通过最大化此数量,我们确保参数的小扰动会引起对系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是本地的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为以不同参数值为特征的系统的不同副本的同时状态对状态控制协议[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控制系统的控件,以达到系统的每个副本,以达到(可能尽可能快)的目标状态,并专门选择目标状态以最大程度地减少测量误差。指纹方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定优点的最大化外,还可以包括其他约束来分析这些问题,例如控制时间或能量的最小化[56-59]。可以通过这些方法独立地获得不同的控制策略,例如,用于自旋系统的参数估计。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更一般而言,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有指纹方法已短暂地连接到[60,61]中的Fisher信息,但是QFI和选择性方案之间的关系仍未得到探索。为了简化分析,我们专注于链接
使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,此方法不足以齐奏,必须通过外部控制来修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的效果[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最终时间时示意性地将要最大化(或最小化)的数量差异。除其他外,我们可以提及量子Fisher信息的最大化(QFI)[10,15-29] ::::::::::::::: [10,15–30],选择性控制协议[31-39]和fingerprinting方法[40-43]。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与可观察到的特定观察值的方差成正比,该方差与哈密顿的部分衍生物相对于参数估算的部分衍生物。通过最大化此数量,我们确保参数的少量扰动会引起系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是局部的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为同时的状态到状态控制协议,用于以参数的不同值为特征的系统的不同副本[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控件,该控件使我们能够(可能尽可能快)为系统的每个副本达到目标状态,并专门选择目标状态以最大程度地减少测量误差。填充方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定功绩的最大化外,还可以包括其他约束来分析这些问题,例如最小化控制时间或能量[56-59]。不同的控制策略。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更普遍地说,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有固定方法才与[60,61]中的Fisher信息连接起来,但是QFI与选择性协议之间的关系仍未得到探索。为了简化分析,我们专注于链接
NLM 提供对科学文献的访问,但并不意味着 NLM 或美国国立卫生研究院认可其内容。详细了解 PMC 免责声明和版权声明。2021 年 2 月 1 日发表在 PMC 上的一项研究发现,自闭症谱系障碍 (ASD) 出现在幼儿时期,当时婴儿从正常的行为特征过渡到幼儿期表现出 ASD 特征。前瞻性脑成像研究通过揭示 ASD 的神经生物学和发育过程,显示出在症状前检测和为早期干预提供信息方面的巨大希望。本文回顾了从出生到幼儿期 ASD 大脑发育的神经影像学研究,将这些发现与候选神经生物学机制联系起来,并讨论了对未来研究和临床实践的影响。在美国,ASD 的患病率为 1/59,其特点是症状特征各异,社交沟通障碍和限制性重复行为的严重程度各不相同。尽管人们对了解自闭症的神经生物学非常感兴趣,但大多数研究都是横断面研究和诊断后研究,涉及的年龄范围很广。最近的前瞻性研究跟踪了高风险兄弟姐妹从婴儿期到幼儿期的情况,发现自闭症的诊断症状在生命的第一年和第二年的后半段出现。运动技能、对面部和社交场景的关注、对名字的反应、视觉接收和语言技能的差异在生命第二年的早期也很明显。这些行为发生在出生后大脑发育的高度动态时期,其特点是大脑结构和功能发生重大变化。自闭症谱系障碍 (ASD) 患者的大脑发育已得到广泛研究,研究使用了 MRI 等神经成像技术。研究表明,非典型大脑表型在婴儿期出现,通常在两岁左右症状巩固之前。研究表明,后来患上自闭症的婴儿在 12 至 24 个月之间表现出更快的总脑容量增长速度,与非自闭症同龄人相比,这些个体的脑容量有所增加。最近的研究还将生命第二年期间大脑总体积的变化率与 ASD 相关的社交缺陷的严重程度联系起来。此外,研究表明,大脑过度生长不是出生时存在的,而是在生命第一年的后期出现的。这些发现对临床实践具有重要意义,并强调需要进一步研究以确定个人特定的发育问题领域,利用神经学特征分析病因异质性,将遗传变异纳入神经影像学研究,绘制大脑发育和行为表型的共现图,并将体内 MRI 与基础科学相结合,揭示 ASD 病理生理学的机制见解。研究发现,6 至 12 个月大的婴儿的大脑发育显著增长,后来患上了自闭症谱系障碍 (ASD),并在生命第二年出现大脑过度生长。这一发现支持了皮质过度扩张导致 ASD 大脑过度生长的假设。此外,使用机器学习方法通过 6 个月和 12 个月的 MRI 测量值进行诊断分类。研究还发现皮质表面积和厚度的差异检查,ASD 婴儿和幼儿与对照组之间没有发现差异。一项研究在某些情况下观察到局部皮质区域的厚度增加,这可能是由于年龄范围或使用的图像分析管道造成的。在青少年和成年人中,观察到皮质厚度差异,但影响的方向不同。混合纵向设计发现,对于患有 ASD 的个体,儿童时期的皮质厚度较大,随后在中期轨迹交叉,成年早期局部皮质厚度减少。研究表明,皮质厚度的异常模式在 3 岁后出现,此后遵循动态发展模式。还检查了皮质脑回模式,一项研究发现 3 岁时患有自闭症的男孩的梭状回脑回减少,并且脑回纵向增加。在患有自闭症谱系障碍 (ASD) 的个体中,在学龄前,颞叶、额叶和顶叶等区域的脑回增加,而正常发育的对照组局部脑回保持稳定或减少。这与之前关于患有自闭症的大龄儿童和成人大脑发育增加的发现一致。需要进一步研究来揭示患有自闭症的幼儿和婴儿大脑结构的发育模式。杏仁核是大脑的核心社交区域,引起了人们对自闭症病理生理学的极大兴趣,但很少有研究探索其在儿童早期的发展。研究表明,学龄前杏仁核增大与较差的社交和沟通结果相关,在患有 ASD 的女孩身上观察到了显著的影响。纵向调查揭示了患有 ASD 的幼儿的杏仁核大小、行为和遗传风险因素之间的复杂关系。作者比较了正常发育儿童和发育迟缓儿童的小脑体积,但没有发现行为和小脑体积之间的关联。然而,一项针对患有 ASD 的幼儿的研究报告称,小脑内的白质体积较大,灰质增加,尤其是在女性中。其他研究表明,病例组和对照组的小脑体积没有差异,而一些研究表明,与正常发育个体相比,自闭症儿童和成人的胼胝体可能较小。一项对具有自闭症家族风险的婴儿的纵向研究发现,他们的胼胝体面积在出生后第一年增加,但到 2 岁时就恢复正常。此外,在这些婴儿中还观察到轴外液量的增加,这种增加在患上自闭症之前一直持续到 24 个月。研究发现,6 个月时的轴外液量与自闭症谱系障碍 (ASD) 严重程度有关。在更大的婴儿群体中,与对照组相比,患有自闭症的婴儿轴外液量增加了 18%。该研究还报告称,自闭症症状最严重的儿童轴外液量增加了 25%。Shen 和同事发现,无论孩子是否有家族风险,轴外液的增加都会持续到 3 岁。他们还将体液增加与自闭症儿童的睡眠问题和非语言能力下降联系起来。使用扩散 MRI 的研究调查了 ASD 中的白质连接性和完整性。虽然很少有研究关注学龄前时期,但早期研究结果表明大脑某些区域的分数各向异性 (FA) 较高,表明白质特性更成熟。尽管在很宽的年龄范围内都出现了下降,但研究发现患有自闭症谱系障碍 (ASD) 的幼儿和儿童的分数各向异性 (FA) 较低。两项纵向研究揭示了 ASD 中白质发育的动态发展性质。一项研究跟踪了 6 至 24 个月大有患 ASD 风险的婴儿,发现那些后来患上 ASD 的婴儿最初表现出 FA 增加,随后成熟速度变慢。另一项研究报告了与年龄相关的 FA 异常变化,FA 在较小年龄时较大,后来变化速度变慢。这些发现表明 ASD 的特点是生命第一年 FA 增加,随后成熟速度变慢,最终可能导致年龄较大的儿童和成年人的 FA 值降低。最近的研究还探索了白质发育作为网络或连接组的情况。一项研究发现,与对照组相比,患有 ASD 的幼儿局部和整体效率降低,尤其是在感觉处理区域。另一项研究表明,在后来患上 ASD 的婴儿中,早在 6 个月大时,白质网络效率就存在缺陷。此外,研究将白质发育与幼儿的 ASD 相关行为联系起来,包括限制性和重复性行为以及对感觉刺激的反应。语言分数的个体差异与白质发育的差异有关。对有自闭症谱系障碍 (ASD) 家族风险的婴儿的研究发现,大脑结构的改变可能导致 ASD 的行为紊乱。功能性磁共振成像研究揭示了神经活动对听觉刺激的反应存在差异,包括大脑半球之间的同步性降低和语言网络的异常侧化。与对照组相比,患有自闭症的幼儿表现出较弱的半球间同步性,双侧颞叶和额叶区域的激活度降低。该研究还发现大脑与行为之间的关系呈负相关,表明自闭症患者的语言区域功能特化异常。研究表明,婴儿在患上自闭症谱系障碍 (ASD) 后,某些区域(如扣带回和岛叶)的大脑活动可能会发生变化。然而,还需要更多的研究来证实这些模式是否是自闭症所特有的。研究还发现,患有自闭症的小男孩的杏仁核与其他参与社交沟通和重复行为的大脑区域之间的联系减弱。一项针对有患自闭症风险的婴儿的研究发现,不同大脑网络的功能连接与后来的限制性和重复性行为的发展之间存在关联。然而,随着孩子长大,这种关联的方向发生了变化。研究还表明,静息状态连接可用于预测 6 个月大婴儿的诊断结果。早在 6 个月大时,患上 ASD 的婴儿就表现出异常的白质发育和脑脊液量增加,这与运动延迟和非典型视觉定向相吻合。大脑变化先于定义 ASD 特征的出现,并与生命第一年的行为变化有关。这些发现表明,大脑表型保持稳定,而 ASD 症状在生命第二年巩固。跨多个范式的研究(包括每个表型的纵向研究)支持此处提出的发现(图)。双条表示轨迹的未知或记录不全的起点和/或终点。顶部面板中的虚线表示典型的大脑发育,上下偏差表示相对于对照组的大脑表型增加或减少。例如,与对照组相比,ASD 中的分数各向异性在 6 个月时增加,在 12 个月时保持不变,从 24 个月到 36 个月时降低。重复行为和社交缺陷持续超过 36 个月,没有被引用,因为这些是自闭症患者的诊断特征。第一年的表面积过度扩张先于第二年的大脑过度生长34。同时,对名字的反应改变从 9 个月开始,并持续到 24 个月21,与对照组相比,注意力轨迹不同19,自闭症症状的出现9,11–14。这些发现有助于形成一条发展时间表,其中与自闭症和风险相关的大脑和行为表型在前驱期出现,大致在两岁生日之前,此后诊断症状得到巩固。在灰质发育和皮质表面积扩大的推动下,头两年大脑快速生长27。然而,在 ASD 中,这种出生后的轨迹被打乱了。行为和神经影像学研究表明,皮质表面积的过度扩张与 6 至 12 个月前观察到的运动、感觉和视觉缺陷的前驱期同时发生,随后在第二年出现大脑过度生长和自闭症社交缺陷2。这凸显了控制表面积扩张的机制在 ASD 病理生理学中的核心作用。扩张被认为是由神经祖细胞增殖、分化和迁移113–116 控制的,oRG 细胞群扩张与大脑大小直接相关113。神经祖细胞增殖和神经发生在 ASD 发展中的潜在作用得到了临床前、遗传、尸检数据118 和最近研究的支持,这些研究表明来自 ASD 患者的细胞存在过度增殖。此处给出文章文本 大脑生长加快,特别是某些区域(例如视觉皮层)的大脑生长加快,可能是自闭症综合征的标志,包括 16p11 缺失、PTEN 和 Chd8 突变。研究表明,神经元增殖增加会导致神经连接发生变化,进而影响电路功能和行为。对小鼠的研究还发现,上层锥体神经元的过度繁殖会破坏正常的大脑发育,导致突触连接改变和类似自闭症的行为。此外,研究报告称,患有大头畸形的 ASD 患者的突触形成和神经元兴奋性发生了改变,抑制性神经元和突触也增加了。这些发现表明,大脑生长异常和神经回路中断可能是某些自闭症谱系障碍 (ASD) 亚型的潜在因素。此外,在 ASD 小鼠模型中观察到了经验依赖性可塑性和突触修剪机制的中断,这凸显了平衡兴奋性和抑制性突触在调节神经元之间竞争方面的重要性。研究还表明,6 至 12 个月的皮质过度扩张可能导致视觉定向行为缺陷,最终导致电路修剪效率低下和 ASD 特征的出现。此处给出文章文本自闭症谱系障碍 (ASD) 中存在轴外液体量表明存在超出当前理解的其他致病机制。最近的研究强调了脑脊液 (CSF) 在大脑发育和功能中的作用,研究结果表明脑脊液循环中断和代谢物积累会影响大脑功能。在表面积过度扩张之前增加的脑脊液量表明脑脊液在 ASD 的病理生理学中起调节作用。胼胝体形态和白质微结构的改变暗示着髓鞘形成、轴突口径和连接性控制过程。髓鞘形成基因富集的小鼠模型已发现少突胶质细胞功能发生显著改变,导致髓鞘厚度减少和连接效率低下。这些发现支持了这样一种观点,即 ASD 源于多种产前和产后致病机制,包括神经增殖、迁移、突触发生、修剪、髓鞘形成以及轴突发育和连接。尽早发现婴儿期的 ASD 对开发更有效的治疗方法至关重要。这一过程的复杂性反映在 ASD 患者身上观察到的多种症状和临床结果上。最近的研究使用机器学习技术分析婴儿 MRI 扫描,并以高精度预测 24 个月时的 ASD 诊断。特别是两项研究表明,生命第一年收集的 MRI 扫描可用于准确识别将继续发展为 ASD 的婴儿。一项研究开发了一种深度学习算法,该算法正确预测了 106 名高危婴儿的诊断结果,灵敏度为 88%,特异性为 95%,阳性预测值为 81%。这种方法优于生命头两年的行为测量,并有可能在大脑发育的关键时期实现早期干预。另一项研究使用支持向量回归机在 59 名高危婴儿样本中预测 ASD 诊断,灵敏度为 82%,特异性为 100%,阳性预测值为 100%。这些发现为使用 MRI 和机器学习技术进行更大规模的症状前诊断分类研究铺平了道路。在儿科神经影像学中使用数据驱动方法有望绕过事先进行特征选择的需要,从而实现更准确和更通用的模型。研究表明,深度学习 (DL) 方法可以实现更高的抽象和复杂程度,从而检测数据中的细微模式。然而,在经验丰富的专业人员(如人工智能科学家、统计学家或工程师)的监督下使用这些方法至关重要,他们经常将机器学习算法应用于高维数据集。对疾病的临床了解对于解释这些模型产生的复杂结果也至关重要。进行基于神经影像的预测研究的最佳实践包括确保足够的样本量和普遍性、解释和方法透明度。未来使用大型、公开可用的数据集的工作将有助于解决与样本量和类别不平衡相关的问题。解决这些问题需要开发新方法,例如合成过采样策略。了解从 MR 图像中得出的哪些特征有助于分类也至关重要。虽然目前的方法可以解释深度学习模型,但需要进一步研究来应对这一挑战。最终,在出版物中报告和共享机器学习算法的透明度对于共享知识和为该领域的最佳实践制定标准是必要的。该研究采用了机器学习算法,报告样本量、交叉验证、训练、测试程序、解决类别不平衡、调整参数和优化步骤。应包括解释结果的详细信息,包括识别算法学习的信息和临床相关的性能指标(特异性、敏感性、阳性预测值)。必须提供用于验证和复制的用于构建算法和进行分析的代码。大规模的症状前个性化预测对于塑造临床实践具有重大意义,必须仔细考虑伦理影响。神经科学中从群体层面的相关性到个体层面的预测的转变对于改善生活至关重要,首先是通过将模型应用于新的独立数据集来复制开创性的研究。心理放射学的发展已显示出希望,旨在实现精神疾病的个性化预测。将经过验证的算法整合到临床实践中符合精准医疗框架,为个体分配个性化治疗计划。早期诊断和干预至关重要;虽然存在针对 ASD 的循证行为干预,但预防性干预仍未经证实。神经影像学可以用作基于生物学的筛查工具,指导未来的研究。考虑到 ASD 和神经发育障碍的表型变异性,下一步的主要工作是开发方法来预测个性化关注领域。超过四分之一的有家族性 ASD 风险的婴儿在头几年会出现亚阈值异常行为,使他们成为有针对性干预的候选人。机器学习方法已经证明了使用新生儿扩散 MRI 对幼儿期认知结果的个性化预测。未来的工作应该将类似的方法应用于有 ASD 风险的婴儿。解析神经发育特征中的异质性是一种有前途的方法,可以了解 ASD 等复杂神经精神疾病的症状多样性。 NIMH 的 RDoC 项目专注于根据神经特征识别亚组,以揭示病因和治疗方面的见解。实施聚类算法可以帮助识别疾病的不同轨迹,可能反映不同的病因。虽然遗传研究已经确定了一些 ASD 病例中的新生突变,但常见的多基因变异被认为是大多数病例的原因。可遗传背景遗传变异、多基因风险之间的关系婴儿期和幼儿期大脑发育的特定个体差异以及原因仍然未知。最近对综合征型 ASD 的研究显示了背景遗传变异对幼儿行为发育的预测能力。未来的研究应将其扩展到特发性 ASD,使用神经影像学揭示早期行为表现的见解。患有 ASD 的婴儿表现出各种大脑表型,包括过度生长、液体量增加和白质发育异常,但没有一种足以预测诊断或确定因果机制。为了更好地理解这些表型及其与行为的关系,绘制从婴儿期到诊断期间大脑和行为表型的共同发展过程应该是一个主要的科学目标。先前的研究主要集中于对大脑发育的早期阶段进行建模,但需要更多地关注可能对自闭症谱系障碍 (ASD)185 至关重要的后期阶段。未来的研究应扩展到患有 ASD 和表现出大脑过度生长表型 119–121 的个体之外,以更深入地了解该疾病的根本原因。脑成像数据可以区分有患 ASD 风险的婴儿和正常发育的儿童,甚至在出现任何明显的行为问题之前。许多研究得出了几个关键发现,包括患有 ASD 的个体的脑容量增加、轴外液体量、白质发育改变和连接模式异常。这表明各种神经生物学因素都会影响儿童早期的大脑和行为发育。最近的进展促成了个性化预测模型的开发,用于识别患 ASD 风险较高的婴儿,强调需要有效的症状前干预措施。未来的研究应集中于研究病因异质性,并通过结合神经影像学、行为和基础科学研究的多学科方法将大脑和行为发育与潜在的遗传机制联系起来。该领域在描述婴儿期和幼儿期与自闭症相关的大脑表型方面取得了重大进展,包括大脑过度生长、脑脊液量增加、白质发育改变以及结构和功能连接模式异常。使用神经影像数据预测诊断和维度结果对推进临床实践大有裨益。未来的工作应侧重于解析自闭症的异质性、将遗传变异与脑影像数据联系起来、绘制发育大脑和行为表型的共现图表以及将神经影像研究与基础科学研究相结合。近年来,自闭症早期大脑和行为发育的研究取得了重大进展。研究揭示了从出生到学龄前自闭症症状的出现,神经成像技术揭示了大脑发育的不同模式。这些发现表明自闭症可能与早期大脑结构和功能异常有关。2017 年发表的一项研究提出了一个概念框架,用于理解自闭症早期大脑和行为发育。另一项研究发现,年仅 12 个月大的婴儿表现出重复性行为,这些行为后来成为自闭症谱系障碍 (ASD) 的特征。自闭症遗传学研究也取得了进展,一些研究表明兄弟姐妹中自闭症复发风险更高。此外,纵向研究追踪了自闭症症状随时间的发展,揭示了可以为早期干预和诊断提供信息的模式和轨迹。总体而言,这些研究有助于我们了解自闭症的复杂性和多面性,强调需要进一步研究其病因、病程和治疗。研究调查了有自闭症谱系障碍 (ASD) 风险的婴儿的早期运动能力和行为。这些研究旨在确定婴儿时期自闭症的潜在标志或指标,希望它们可以用作预测指标或后期诊断的预测指标。2019 年发表的一项研究发现,患自闭症风险较高的婴儿与风险较低的婴儿相比,表现出不同的运动能力。2012 年发表的另一项研究发现,婴儿的头部滞后与患自闭症的风险增加之间存在相关性。研究人员还探讨了注意力、社交参与和视觉处理在有自闭症风险的婴儿中的作用。例如,一项研究发现,后来被诊断为自闭症的婴儿早在 6 个月大时就表现出对社交场景的自发注意力下降。另一项研究发现,这些婴儿在受到干扰时不太可能与自己的面部互动。此外,研究还检查了有自闭症风险的婴儿对言语提示和听觉刺激的反应。2017 年发表的一项研究发现,这些婴儿对名字识别的反应与没有自闭症的婴儿不同。最近的研究集中于婴儿期的大脑发育,包括白质微结构、皮层下脑功能和皮层厚度。这些研究旨在确定 ASD 的潜在生物标记或了解潜在的神经机制。总体而言,这些研究表明,早期运动能力、注意力、社交参与和视觉处理可能是婴儿期 ASD 风险的重要指标。需要进一步研究才能充分了解这些因素与 ASD 发展之间的关系。研究表明,婴儿的白质微结构发育与认知能力密切相关。研究使用基于束的分析和功能连接映射等技术,研究了从出生到 2 岁期间大脑结构和功能的变化。一项研究发现,0-24 个月大婴儿的白质结构变化与 24 个月大婴儿的认知能力提高有关(Gao 等人,2015 年)。另一项研究发现,在 6 至 18 个月大婴儿出现自闭症样症状时,婴儿在 12 个月大时某些大脑区域的白质完整性会降低,这预示着 24 个月大婴儿的诊断结果会更准确(Emerson 等人,2017 年)。其他研究人员使用 MRI 扫描检查了患有自闭症谱系障碍 (ASD) 的婴儿的大脑,发现婴儿的大脑结构存在显著差异,包括某些区域的大脑尺寸增大(Piven 等人,1992 年;Courchesne 等人,2001 年)。一项较新的研究使用大量高风险婴儿,确定了自闭症的早期生物标志物,例如大脑区域间功能连接减少(Hazlett 等人,2017 年)。这些发现表明,早期生活经历和遗传倾向可以影响自闭症儿童的大脑发育。需要进一步研究以了解推动这些变化的潜在机制并制定有效的干预措施。注意:我将参考文献压缩为较短的格式,同时保留基本信息。如果您希望我扩展任何特定参考文献或提供更多详细信息,请告诉我!一系列研究调查了自闭症谱系障碍 (ASD) 患者从出生到 2 岁及以后的大脑发育和结构。该研究使用磁共振成像 (MRI) 和头围测量来检查自闭症儿童的大脑大小和形状。研究发现,在幼儿时期,大脑增大与自闭症男孩的退化有关。此外,后来患上自闭症的个体的皮质表面积在 2 岁之前增加。纵向 MRI 研究表明,自闭症患者的皮质发育持续到儿童早期。其他研究表明,2-3 岁的幼儿就存在脑成像异常,这表明自闭症可能是一种早期神经发育障碍。一些研究发现,一部分患有自闭症的男孩的表面积增加,但皮质厚度没有增加,而其他研究则使用基于表面的形态测量法来绘制患有自闭症的学龄前儿童的皮质解剖图。总体而言,研究表明,自闭症患者的大脑结构和发育从儿童早期开始就会发生改变。自闭症谱系障碍 (ASD) 的研究表明,大脑结构的变化,特别是皮质厚度的变化,可能与自闭症有关。研究发现,与没有自闭症的人相比,自闭症患者的皮质厚度往往会发生变化。然而,这些变化的程度和性质在不同的发育阶段会有所不同。一些研究表明,患有自闭症的儿童表现出额叶皮质褶皱增加,而年龄较大的青少年和成年人则表现出额叶皮质褶皱减少。此外,研究发现,患有自闭症的个体经常表现出脑沟大小和形状异常,这可能与社交沟通障碍有关。杏仁核是参与情绪处理的区域,也与自闭症有关。研究表明,患有自闭症的个体往往比没有自闭症的个体拥有更大的杏仁核,尤其是在幼儿和幼儿中。然而,杏仁核大小和自闭症行为症状之间的关系很复杂,受各种因素的影响。纵向研究为自闭症大脑变化的发展和进展提供了宝贵的见解。例如,一项研究发现,自闭症儿童的杏仁核体积随着年龄的增长而增加,而另一项研究发现,联合注意力技能与杏仁核体积的变化有关。脆性 X 综合征的研究强调了自闭症的异质性,脆性 X 综合征与自闭症有一些相似之处,但也表现出明显的大脑差异。总体而言,研究结果表明,大脑结构和功能在理解自闭症方面发挥着重要作用,需要进一步研究来阐明大脑变化与自闭症行为症状之间的复杂关系。一些发表在知名期刊上的重要研究包括:* Wolff 等人(2014 年)- 神经发育障碍:通过发展研究加速自闭症的进展。* Libero 等人(2018 年)- 自闭症谱系障碍年轻男孩局部脑回指数的纵向研究。* Williams 等人(2012 年)- 自闭症和阅读障碍皮质复杂性的球谐分析。* Kohli 等人(2019 年)- 自闭症谱系障碍儿童的局部皮质脑回增加,但青少年的局部皮质脑回迅速减少。这些研究表明,人们正在努力了解自闭症的神经基础,并开发有效的干预措施来支持患有这种疾病的人。研究调查了与自闭症谱系障碍 (ASD) 相关的大脑结构和发育变化。研究发现,患有自闭症的儿童,尤其是 2-5 岁的儿童,尾状核发育异常,而尾状核与重复行为有关。此外,由于家庭因素而患自闭症风险较高的婴儿被发现存在大脑解剖结构差异,包括皮层下和小脑区域,这预示着以后重复行为的出现。纵向研究还表明,患有自闭症的幼儿随着时间的推移,胼胝体形态会发生变化。这些变化可能与自闭症相关症状的发展有关,例如社交互动受损和沟通困难。此外,研究强调了小脑在自闭症中的潜在作用,几项研究表明自闭症患者的小脑体积和结构发生了改变。小脑参与运动控制、学习和情绪调节,可能导致自闭症中观察到的认知和行为症状。总体而言,这些发现表明,大脑发育和解剖结构的早期变化可能与自闭症症状的出现有关,特别是那些与重复行为和社交沟通困难相关的症状。本文讨论了一系列关于自闭症谱系障碍 (ASD) 儿童大脑发育的研究。该研究重点关注了自闭症儿童与非自闭症儿童相比,大脑中白质纤维和连接的发育情况。一项研究发现,自闭症儿童在幼儿期白质成熟速度加快。另一项研究发现自闭症儿童的白质完整性存在异常。第三项研究表明,后来被诊断患有自闭症的幼儿颞胼胝体纤维表现出多种结构异常。其他研究使用弥散张量成像 (DTI) 来研究自闭症儿童白质纤维和连接的发育情况。一项研究发现,6-24 个月之间,自闭症婴儿与非自闭症婴儿的白质纤维束发育存在差异。另一项研究发现,自闭症幼儿的白质连接异常,包括额叶可能存在轴突过度连接。总体而言,这些研究表明,自闭症儿童的白质纤维和连接发育可能存在异常,这可能与该疾病特有的社交和认知缺陷有关。研究发现,自闭症谱系障碍 (ASD) 患者的网络效率低下早在 24 个月大时就存在,这种现象可能会持续存在并随着时间的推移发展成更严重的症状。研究表明,有患自闭症风险的婴儿在 6-7 个月大时就会表现出异常的神经回路和白质微结构,尤其是在负责语言处理和社交互动的区域。此外,研究还发现,自闭症患者的大脑中与语言处理相关的脑区侧化往往会发生改变,这会影响他们处理和理解语言的能力。这种语言障碍被认为是自闭症早期出现的根本特征。此外,研究表明,自闭症幼儿的神经同步模式被破坏,这可能导致自闭症特有的社交和沟通障碍的发展。研究还探讨了自闭症幼儿的大脑功能与社交行为之间的关系。研究发现,与社交和感觉运动缺陷相关的神经回路功能连接异常可以预测自闭症的后期症状。最后,研究检查了患有自闭症的学龄前男孩语言变异的神经相关性,发现非典型语言处理模式与患自闭症的风险更高有关。总体而言,这些研究表明,大脑结构和功能的早期异常可能导致自闭症症状的发展,并强调早期诊断和干预的必要性。研究表明,患有自闭症谱系障碍 (ASD) 的儿童表现出大脑连接和发育中断,特别是在杏仁核和胼胝体等区域。研究还发现白质纤维束发育存在差异,这可能导致自闭症的发展。有患自闭症风险的婴儿的大脑功能和结构发生了改变,包括白质和胼胝体的变化。这些发现表明,早期干预可能有助于预防或减轻自闭症的影响。此外,研究表明,更广泛的自闭症表型早在婴儿期就可能出现,这表明自闭症是一种复杂的特征,不能仅仅归因于遗传因素。此外,对人类大脑发育的研究揭示了神经干细胞和祖细胞在大脑皮层形成中的作用。研究还表明,进化过程中的大脑皮层扩张可能与自闭症的病因有关。总的来说,这些发现强调了早期发现和干预自闭症风险患者的重要性,以及进一步研究这种复杂疾病的潜在机制和原因的必要性。注意:我在改写过程中进行了一些创造性的改动,使其更易读、更简洁,同时保持了原文的整体含义和本质。对特发性自闭症患者神经细胞的研究表明,其增殖和网络发生了改变(Marchetto 等人,2017 年)。此外,研究发现,自闭症谱系障碍中存在 FOXG1 依赖的 GABA/谷氨酸神经元分化失调(Mariani 等人,2015 年)。此外,病理性启动与自闭症受试者衍生神经元的发育基因网络异时性有关(Schafer 等人,2019 年)。遗传学研究已确定了与自闭症有关的几个关键基因,包括 PTEN,它调节小鼠的神经元树突和社交互动(Kwon 等人,2006 年)。破坏性 CHD8 突变也已被证明可在发育早期定义自闭症亚型(Bernier 等人,2014 年)。已经研究了来自自闭症谱系障碍遗传模型的人类诱导多能干细胞衍生神经元的细胞表型,揭示了与典型对照细胞相比的细胞差异(Deshpande 等人,2017 年)。在 16p11.2 缺失和重复变异的携带者中也发现了相反的大脑差异(Qureshi 等人,2014 年)。研究探索了小鼠大脑皮层上层神经元与自闭症样特征之间的关系,揭示了这些神经元的过量生产导致自闭症行为(Fang 等人,2014 年)。改变的大脑皮层基因表达、大脑过度生长和功能过度连接也与小鼠的 Chd8 单倍体不足有关(Suetterlin 等人,2018 年)。对发育突触修剪的研究揭示了 LTD 样分子通路在此过程中的作用,对自闭症研究具有潜在意义(Piochon 等人,2016 年)。局部皮质回路的关键期可塑性也得到了探索,强调了这一时间窗口对大脑正常发育和功能的重要性(Hensch,2005)。已发现导致综合征性自闭症的突变定义了突触病理生理学轴,这对我们理解自闭症的潜在机制具有重要意义(Auerbach 等人,2011)。研究人员发现,综合征性和非综合征性自闭症啮齿动物模型中存在共同的突触病理生理学。研究还表明,在携带与自闭症相关的拷贝数变异的小鼠中,小脑可塑性和运动学习能力受损。此外,有自闭症风险的婴儿的白质微结构发生了改变,表明早期大脑发育发生了变化。已发现脑脊液 (CSF) 在神经祖细胞增殖中起着至关重要的作用,可能参与自闭症的早期大脑发育。 CSF 还提供了清除间质溶质(包括淀粉样蛋白 β)的途径。髓鞘形成缺陷在综合征型和特发性自闭症谱系障碍 (ASD) 中很常见。Pten 的体质性错误定位与少突胶质细胞的早熟和 ASD 模型中的异常髓鞘形成有关。前额叶轴突的变化可能会破坏自闭症中的网络,表明连接性发生了改变。活动依赖性髓鞘形成和髓鞘形成神经胶质细胞上的非突触连接促进电活性轴突的优先髓鞘形成。最后,几项研究已经确定了自闭症谱系障碍 (ASD) 的常见遗传风险变异,强调了了解这种疾病背后的复杂遗传学的重要性。这一系列参考文献涉及自闭症谱系障碍 (ASD) 及其早期检测和预测。这些论文探讨了各个方面,包括:* ASD 的生物学,从细胞增殖到临床表型 * 父母的担忧可以预测以后的自闭症诊断 * 18 个月的标记可以预测自闭症儿童的弟弟妹妹以后的结果 * 幼儿自闭症的筛查工具 * 对疑似患有自闭症的幼儿的临床评估和管理 * 使用深度学习和机器学习算法研究精神和神经疾病(包括自闭症)的神经影像相关性 此外,参考文献还涉及: * 深度学习在婴儿脑部 MRI 分析中的作用 * 解决不平衡数据集和改进预测模型的技术 * 从出生到婴儿期自闭症患者的大脑和行为发展 * 预测是人类认知神经科学对人道主义和务实应用的贡献 * 跟踪精神病的维度和分类特征的个体特定功能连接标记 总体而言,这些参考文献为自闭症的早期发现和预测以及机器学习和深度学习算法在该领域的应用提供了见解。最近的研究探索了精神神经影像学在临床环境中的应用,即心理放射学。该领域已显示出利用磁共振成像 (MRI) 和放射组学分析检测精神分裂症和注意力缺陷多动障碍 (ADHD) 的前景。具体而言,研究重点是通过分析大脑图像和基于图形的指标来提高 ADHD 的诊断准确性。研究还检验了对患有自闭症谱系障碍的幼儿进行早期干预的有效性,包括父母介导的疗法和行为干预。此外,人们对精准医疗的兴趣日益浓厚,精准医疗旨在根据患者独特的基因特征为其量身定制治疗方案。另一个研究领域涉及了解自闭症的神经相关性,一些研究表明,出生时的白质连接组可以预测成年后的认知能力。此外,脑成像和机器学习的进步使研究人员能够开发出分析大脑网络和预测神经发育结果的新工具。这些发现对一系列神经和精神疾病的早期诊断、治疗和干预策略具有潜在意义。提到的一些关键研究包括:* Lei 等人。 (2019):研究了全脑图像、全连接组功能连接和基于图形的指标在检测精神分裂症方面的相对诊断价值。 * Port JD (2018):提出使用 MRI 成像和放射组学分析来诊断 ADHD。 * Collins & Varmus (2015):提出了一项关于精准医疗的新举措。 * Dawson 等人 (2010):对患有自闭症的幼儿进行了一项早期干预的随机对照试验,称为早期丹佛模式。 * Kasari 等人 (2015):评估了家长干预对自闭症幼儿的比较效果。这些研究表明,我们正在不断努力提高对精神神经影像学及其在临床环境中的应用的理解。以下文章讨论了自闭症谱系障碍 (ASD) 研究的各个方面,包括诊断、认知特征、大脑功能和遗传因素。这些研究探讨了理解 ASD 的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑 ASD 异质性的重要性,一些研究侧重于父母认知和行为特征在塑造临床变异性方面的作用。其他研究则探讨了早期运动迟缓与后来诊断 ASD 或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解 ASD 的复杂原因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患 ASD 的风险。 2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发育。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的眼球反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种可以消退的良性疾病。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。这些研究探讨了理解自闭症的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑自闭症异质性的重要性,一些研究侧重于父母的认知和行为特征在塑造临床变异性方面的作用。另一些研究则探讨了早期运动迟缓与后来诊断自闭症或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解自闭症的复杂病因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑类器官的出现,这可能有助于了解发育障碍。日本的一系列病例使用视频脑电图监测研究了 4 名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。异常动作包括罕见的反张姿势和眼球偏斜。发作通常由换尿布或喂奶时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的疾病是由于镁营养缺乏引起的婴儿震颤综合征,它会导致快速震颤,在睡眠中消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。这些研究探讨了理解自闭症的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑自闭症异质性的重要性,一些研究侧重于父母的认知和行为特征在塑造临床变异性方面的作用。另一些研究则探讨了早期运动迟缓与后来诊断自闭症或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解自闭症的复杂病因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑类器官的出现,这可能有助于了解发育障碍。日本的一系列病例使用视频脑电图监测研究了 4 名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。异常动作包括罕见的反张姿势和眼球偏斜。发作通常由换尿布或喂奶时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的疾病是由于镁营养缺乏引起的婴儿震颤综合征,它会导致快速震颤,在睡眠中消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。以及罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。以及罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。
这些准则概述了验证用户身份并通过网络对政府信息系统的访问的必要步骤。他们为身份证明,注册,身份验证者,管理流程,身份验证协议,联邦和相关断言建立了技术要求。此外,他们提供了建议和内容丰富的文本,旨在作为有用的建议。这些准则并不意味着限制超出此目的的标准的制定或使用。本出版物取代NIST特别出版物(SP)800-63-3。数字身份指南修订版4:增强在线服务的安全性,隐私和权益。新准则解决了对可靠的数字身份解决方案的不断增长的需求,这是基于过去几年从在线风险中学到的经验教训的基础。准则需要澄清公共和企业设置中可同步身份验证者的要求是否足以获得合理的基于风险的接受。应捕获其他建议的控件或实施注意事项。应审查基于钱包的身份验证机制和属性束的定义,并添加或澄清任何其他要求。也必须对用户控制的钱包和属性捆绑包进行充分描述,以支持现实世界中的实现,并增加了任何必要的安全性,可用性和隐私改进。此外,专注于身份安全的应用研究和测量工作可能会对市场产生重大影响。§3552(b)(6)。开发特定的实施指南,参考体系结构,指标或其他支持资源可能会促进这些准则的采用和实施。鼓励公众在2024年10月7日之前审查和评论卷的草案。本出版物旨在为实施数字身份服务的组织提供技术指南,以及其同伴量([SP800-63A],[SP800-63B]和[SP800-63C])。它强调需要根据在线服务的快速扩散,需要可靠,公平,安全和隐私保护数字身份解决方案。数字身份在在线服务中是独一无二的,但不一定揭示其背后个人的现实身份。如果不需要对一个人的现实身份的信心访问在线服务时,组织可以使用匿名或化名帐户。否则,数字身份旨在证明持有人与服务提供商之间的信任,带来挑战,遇到错误,沟通不畅,模仿和其他欺诈性地声称他人数字身份的攻击。数字服务必须具有灵活性,以确保考虑个人需求,约束和偏好,以确保广泛的参与和访问技术。由于数字身份风险是动态且复杂的,因此组织应采用量身定制的风险管理方法,以满足其独特的要求。此外,本出版物为凭证服务提供商,验证者和依赖方提供了补充现有标准的指南。2。本指南提供了特定的保证级别,作为解决与身份相关风险的共同参考点,提供了多个好处,例如在其风险管理旅程中的代理机构的起点以及不同实体之间互操作性的框架。但是,创建解决所有潜在风险的全面保证水平是不现实的,因此本文档促进了面向风险的方法,而不是以合规性为中心的方法。鼓励组织根据这些准则中概述的流程来调整其控制实现,不仅考虑组织安全,而且考虑个人隐私,公平性和可用性。数字身份决策应与以人为中心的考虑之间取得平衡,以确保与组织的计划和服务互动的个人具有适当的补救选择。通过采用不断知情的任务交付方法,组织可以通过不同的人群逐步建立信任,提高客户满意度,并为数字身份环境中的复杂挑战提供有效的解决方案。自先前版本的SP 800-63以来,身份服务的组成已经显着发展,此修订版通过在整体数字身份模型中阐明基于实体功能的要求来解决这些变化。数字身份管理框架(NIST RMF)及其相关的特殊出版物概述了组织在实施数字身份服务时应遵循的风险管理过程。但是,它们不涵盖44 U.S.C.中定义的国家安全系统。此框架通过将权益和可用性考虑因素纳入数字身份管理过程来扩展NIST RMF。它强调了不仅要考虑对企业运营的影响,而且对个人,其他组织和整个社会的影响的重要性。该指南还解决了与在身份证明,身份验证和联邦过程中处理个人信息相关的潜在隐私风险。这些准则适用于所有需要一定程度上数字身份的在线服务,包括居民,商业伙伴,政府实体,员工和承包商访问的指南。框架解决逻辑访问控制过程,但并未专门解决物理访问控制或机器对机器人身份验证。私营部门组织以及州,地方和部落政府可以在适当的时候考虑使用这些准则进行数字身份保证。这套准则旨在减轻数字身份系统中的错误,重点介绍身份证明,身份验证和联邦。它概述了选择控件根据风险和任务保护这些过程的过程,以确保为执行的每个功能选择个人保证水平。该指南为管理数字身份提供了一个框架,包括对身份证明,身份验证和联邦的要求。这些关键因素包括信息安全性,数据隐私,访问权益和用户友好性。以下概述的考虑因素支持知情的决策和包容性服务交付。[sp800-63a]的5。[sp800-63a]的5。在评估与企业资产,个人,其他组织和整个社会有关的风险时,至关重要的是平衡这些方面。组织可能会发现有必要实施本文档中未指定的其他措施或保障措施,尤其是在处理敏感信息或特定法律要求时。他们还可以考虑将在线服务隔离到不同级别的访问级别,以确保在不损害安全性的情况下更大的股权。这不是详尽的列表,而是突出了影响数字身份管理决策的关键因素。数字身份安全风险冒着未经授权访问的风险已成为组织的重要问题。在咨询此指南时,请考虑如何影响组织或其服务提供商管理的信息系统的机密性,完整性和可用性。联邦机构必须遵守Fisma法规和NIST标准。建议非联邦组织遵循可比的安全标准(例如ISO 27001),以进行安全数字操作。组织必须评估和管理与身份证明和身份验证过程相关的身份相关的欺诈风险,如FISMA和RMF控件所确定。至关重要的是要考虑不断发展的威胁环境,数字身份市场中的创新反欺诈措施以及与身份相关的欺诈对公共信任,代理商声誉和电子政务服务提供的潜在影响。他们必须证明其系统中组织隐私政策和系统要求的实施。3。本指南通过引入新的保证水平,更新身份验证风险和威胁模型,提供抗网络钓鱼的身份验证选项,防止针对入学过程的自动攻击,并为新兴的移动驾驶员的许可和可验证的凭证做准备,从而增强了对身份盗用和欺诈的措施。在设计数字身份系统时,必须考虑与处理个人身份信息(PII)以及有问题的数据动作的影响相关的潜在隐私风险。在违反或发布敏感信息的情况下,组织必须确保隐私通知清楚地描述了哪些信息的发布不当以及如何被利用。这些准则建议采用影响用户和技术提供商的全部法律和监管任务,包括NIST隐私框架,1974年的《隐私法》,OMB实施2002年电子政府的隐私规定的指南,对信息系统和组织的安全和隐私权控制,以保护个人身份的保障指南,以及保护个人身份确认的信息。该指南有助于联邦机构理解哪些构成个人身份信息(PII),其与保密保护,隐私和公平信息实践的关系以及PII保护的保障。SP 800-63的每一卷都包含一个详细的部分,该部分为实施该卷中显示的流程和控件提供了隐私注意事项和要求,包括规范数据收集,保留和最小化标准。2。3。2。权益定义为对所有个体的系统治疗,包括拒绝这种待遇的人的系统治疗。在设计或操作数字身份服务时合并权益注意事项可确保为每个人提供平等的在线服务,这对于医疗保健等关键服务至关重要。数字身份系统如果将现有的不平等加剧并继续对边缘化群体的全身性循环,在公共服务环境中成功交付成功的任务。维持对服务人群面临的现有不平等的认识以及数字身份系统设计或操作造成或加剧的潜在新不平等或差异至关重要。这种意识可以帮助确定机会,流程,业务合作伙伴以及多渠道身份证明和服务交付方法,以最能满足这些人群的需求,同时还管理隐私,安全和欺诈风险。1973年《康复法》第508条旨在消除信息技术的障碍,并要求联邦机构使杀人案患者可以使用电子技术。联邦机构及其身份服务提供商有望设计在线服务和系统,并具有残疾人的经验,以确保可访问性优先考虑。可用性是指在指定使用的情况下以有效性,效率和满意度来实现目标的程度。更高级的模型将这些功能分离为多个实体。3。2。可用性通过要求了解与系统或服务互动的人来支持股权,服务交付和安全性等主要目标。要有效地设计和开发数字身份系统或流程,必须将每个用户的独特目标和使用情况视为整体方法的一部分,以在整个注册和身份验证过程中理解其相互作用。与来自所有社区的人口统计学代表用户进行可用性评估可以帮助确保数字身份系统符合联邦政策中概述的客户体验目标。实施过程,使用户可以轻松地做正确的事情,同时使他们很难做错事,并且在发生错误时提供明确的恢复过程至关重要。###数字身份模型在复杂性上有所不同,简单的模型将功能分组在一起。关键实体包括主题,服务提供商,凭证服务提供商(CSP),依赖方(RP),验证者和身份提供商(IDP)。受试者可以是申请人,订户或索赔人,具体取决于其在数字身份过程中的阶段。CSP为申请人和注册验证者提供了身份证明服务,而RP则依靠此信息用于数字交易或访问控制。验证者通过验证身份验证者的拥有来验证身份,而IDP管理主要身份验证者并发出从订户帐户中得出的断言。申请人启动CSP的注册,提供身份证据和属性。身份证明和注册规范在[SP800-63A]中概述,图1说明了相互作用过程。在成功的身份范围内,它们被当作订户,并与注册的身份验证者一起创建了一个独特的帐户。订户负责维持对其帐户的控制。在使用CSP(云服务提供商)注册时,用户必须遵守某些准则,以维持其在系统中的良好状态。这包括针对盗窃和遵守CSP策略的措施,如图1:样本身份证明和注册数字身份模型。在注册时,CSP设置了一个唯一的订户帐户,以识别每个用户并记录链接的任何身份验证者(绑定)到该帐户。CSP可以在注册期间发出一个或多个身份验证者,注册用户提供的身份验证器,以后根据需要添加其他身份验证器,或者将帐户与通用或订户控制的钱包一起提供。有关订户帐户和规范要求的更多详细信息,请参阅第二节。有关身份验证和身份验证器管理指南,请咨询[SP800-63B]。该指南概述了身份验证中使用的三种类型的身份验证因素:1。**您知道的东西**:示例包括密码。**您拥有的东西**:这可以是包含加密密钥的设备。**您是**:指纹或生物识别数据属于此类别。单因素身份验证仅需要这些元素之一,通常需要“您知道的东西”。3。4。即使是同一因素的多个实例也构成了单因素身份验证,正如用户生成的引脚和密码所见,这是您所知道的两种形式。**多因素身份验证(MFA)**是指使用多个不同的因素。本指南强调,身份验证者始终包含或构成基于钥匙对(非对称加密密钥)或共享秘密(包括对称键和一次性密码种子)的秘密。非对称密钥对由公共钥匙和私钥组成,私有密钥将索赔人牢固存储在身份验证者身上。验证者可以使用身份验证协议来验证索赔人使用订户的公钥具有关联的私钥。激活秘密用于通过解密存储的键或验证本地持有的验证器来验证用户。这些秘密保留在身份验证器和用户端点内,例如PIV卡的引脚。生物特征特征(例如面部特征或指纹)与物理身份验证剂结合使用时可用于多因素身份验证。但是,它们不能用于单因子身份验证。某些身份验证方法(例如驾驶执照)不适用于数字身份验证。其他方法(例如基于知识的身份验证或生物特征特征)并不构成秘密,也不构成数字身份验证。身份验证过程使一个依赖方(RP)能够信任索赔人的身份。这可能涉及RP,索赔人和验证者/CSP之间的相互作用,如图成功的身份验证过程表明了索赔人对与其身份约束的有效身份验证者的控制和控制。精心设计的协议可以保护身份验证期间和之后的通信完整性和机密性,从而限制了攻击者的损害。验证者的机制可以通过控制攻击者可以进行身份验证尝试的速率来减轻在线猜测对密码或引脚等较低内部秘密(例如密码或引脚)的攻击。联邦通过利用信任协议来实现在不同信任领域的安全身份共享。这种方法允许通过联邦主张传达身份和身份验证信息,提供了一些好处,包括增强的用户体验,降低成本和最小化数据曝光。通过使用联合体系结构,组织可以简化其身份管理流程,减少在复杂身份管理上花费的资源并改善技术集成。虽然在不同的安全域中使用时通常首选联邦,但它也可以在单个域中应用于集中式帐户管理和其他好处。SP 800-63指南为各种身份证明,身份验证和联邦架构提供了不可知论的支持,使组织可以根据需要部署数字身份方案。,由于联合协议是基于网络的,并且能够在多个平台和语言上运行,因此需要支持各种环境。该过程涉及多个步骤:1。5。这使来自不同社区的用户具有自己的身份基础架构来访问服务。组织必须具有集中管理帐户生命周期的能力,包括撤销帐户和约束新的身份验证者。如果组织需要化名或服务访问的属性列表,则应考虑接受联合身份属性。当组织不是所需属性的权威来源或仅在使用过程中暂时需要它们时,这也是必要的。未赋予的数字身份模型涉及实体之间的一系列相互作用,包括身份证明和注册活动,如图在此模型中,申请人通过身份证明和注册过程适用于CSP。在成功的身份证明后,申请人将作为订户招募身份服务。索赔人启动了使用一个或多个使用一个或多个身份验证器执行数字身份验证的相互作用的常用序列,索赔人通过身份验证过程证明并控制了身份验证者对验证者的拥有和控制。验证者与CSP相互作用,以验证索赔人身份与其身份验证者的结合,并可选地获得其他订户属性。在订户和RP之间建立了身份验证的会话,并在两个实体之间建立了联系。在这种情况下,订户通过身份证明和注册过程适用于CSP,从而验证其身份。任何偏差必须清楚地传达给RPS。1。然后,CSP将申请人作为订户招募,创建订户帐户和身份验证者。IDP直接由CSP或通过访问订户帐户的属性而间接提供。在此模型中,CSP维护订户帐户及其状态,而订户维护其身份验证者。IDP保持其对订户帐户的看法和分配给其的任何联合标识符。当RP请求索赔人的身份验证时,他们会触发联合身份验证的请求到IDP。然后,索赔人通过身份验证过程证明并控制了身份验证者,这涉及IDP和CSP的验证器函数之间的相互作用。RP和IDP通过联邦协议进行交流,交换断言和属性,以建立对RP在线服务的订户身份和属性的信心。RP可以使用各种因素,例如联邦身份,IAL,AAL,FAL等人做出授权决定。最终,在订户和RP之间建立了身份验证的会话,并在两个实体之间建立了逻辑链接。可以通过各种方式来维护此连接,包括位于同一平台上的数字证书或分布式功能。订户使用数字钱包充当身份提供商(IDP),而CSP充当发行人,RP作为验证者,联合会管理局促进了他们之间的信任协议。申请人申请使用CSP的身份证明和注册。成功进行证明后,申请人会通过入职,并作为订阅者加入身份服务。订户的钱包由CSP登上,并使用激活因子进行身份验证以激活它。RP请求索赔人的身份验证,他们证明拥有钱包。RP通过联邦协议验证钱包提供的断言,其中包括其他属性。在订户和RP之间建立了身份验证的会话。该准则着重于减轻与在线服务相关的数字身份风险,提供了选择可用安全控制的指南,以增强隐私并防止欺诈。持续评估性能对于选择有效控制至关重要。数字身份风险管理(DIRM)流程评估了两个维度的风险:对在线服务的潜在威胁以及身份系统本身所带来的风险。第一个维度为初始保证级别选择提供了信息,而第二维度则试图确定与身份系统实施相关的风险。例如,评估身份验证涉及如果冒险家使用合法用户的身份获得对服务的访问,则考虑负面影响。同样,评估身份验证和联邦需要检查错误索赔或不正确访问的潜在后果。这些错误都可能导致未经授权访问在线服务。这涉及确定身份系统带来的风险并裁缝控制以应对这些威胁。图如果确定了与损害在线服务可以通过身份系统减轻的在线服务相关的风险,则选择初始保证水平,并评估风险的第二维度。例如,如果身份系统的各个方面缺乏隐私,可用性或权益,则评估对身份证明,身份验证和联邦的潜在影响将变得至关重要。裁缝提供了一个过程,以根据持续的风险评估来修改初始保证水平,实施补偿控制或调整选定的控件。数字身份模型涵盖了该实体在其中的作用,重点是保证水平和对在线服务,交易和系统的量身定制保护。此过程会影响CSP的选择,开发和采购,而联邦RP需要为所有在线服务实施DIRM(数字身份风险管理)框架。对于凭证服务提供商和身份提供商,目的是设计服务提供的服务定义的保证水平,同时不断地保护对身份系统的妥协。所有CSP都必须为其提供的服务实施DIRM流程,使RPS提供数字身份认可声明(DIAS)。评估考虑了预期的或代表性的数字身份服务,并从现实世界RPS中寻求对用户群体和上下文的投入。此过程补充了Fisma的风险管理要求,与基本应用程序或系统相比,在线服务可能产生不同的影响水平。五步迪尔姆过程涉及:1。应记录这些评估。身份过程失败可能对用户组的影响有所不同,而基于系统的敏感性和处理的数据,FISMA影响水平的不同。机构授权官员需要证明对DIRM流程的遵守情况的文档,作为ATO的一部分,以支持集成CSP的信息系统和采购流程。定义在线服务,包括功能范围,用户组和基础数据。记录组织在更广泛的业务流程和数据收集影响中的作用。识别在线服务中涉及的实体。建立数字身份要求和安全控制。实施风险管理措施以保护对身份系统的妥协。在线服务将对其一部分的更广泛的业务流程产生连锁反应,从而影响其用户,实体和功能。最初,组织应通过考虑用户组,权限,数据访问和潜在危害来评估受损在线服务的影响。针对定义的类别评估每个功能,以确定影响水平(低,中,高)。结果是每个用户组的记录的影响类别和级别。接下来,根据这些影响评估选择保证水平,以保护在线服务免受未经授权的访问和欺诈的侵害。组织使用SP800-63A/B/C量的指南来确定IAL,AAL和FAL的基线控件。此步骤为每个用户组提供了确定的初始IAL,AAL和FAL。所有评估和决策都是有记录和合理的。然后进行详细的评估,以确定最初选择的保证水平和相关控制对隐私,权益,可用性和对当前威胁的抵抗的潜在影响。裁缝可能会导致修改,补偿或补充控制或两者兼而有之。最后,考虑业务影响,欺诈率,用户社区效果以及使命,业务和安全需求,收集和评估了有关身份管理方法的性能的信息。绩效指标,用于监视的透明过程以及改善可用性,公平性和隐私的机会,鉴于不断发展的威胁格局以及新技术或方法论。6说明了数字身份风险管理过程流的每个阶段的关键动作和结果。尽管作为线性方法表示,但在某些情况下,有必要与顺序顺序差异,例如在进行评估期间新法规或要求出现时。此外,在威胁环境中,数据使用情况,新功能或变化的变化可能会促使重新审视并可能修改在线服务的保证水平和控制。组织应量身定制这种方法,以与他们的内部流程,治理和风险管理实践保持一致。最低要求是执行和记录每个步骤,与代表性的用户互动,以告知身份管理方法的设计和绩效评估,并全面记录每个步骤的规范任务和结果。2。3。4。5。在线服务定义阶段建立了对影响风险管理决策的上下文的共同理解。此步骤提供了上下文丰富的信息,可为后续的DIRM流程步骤提供信息。在更广泛的业务环境和相关流程中,在线服务的作用是在上下文中的,从而记录了对其功能,用户组,数据处理和其他相关细节的记录说明。RP必须开发在线服务描述,至少包括:组织使命和目标;法律,监管和合同要求;功能和基础数据;用户组及其期望;以及隐私和公民自由义务。身份证据的形式的可用性对于需要身份证明的服务至关重要,而组织必须考虑受未经授权用户影响其在线服务的实体。这包括对当地人口和潜在停电的意外影响。要区分用户组和受影响实体,必须了解每个组提供的功能差异。例如,所得税申请服务可以迎合公民检查纳税申报表状态,税务准备者和系统管理人员的征服。相比之下,受影响的实体涵盖了所有受在线服务影响的人群,例如那些从治疗设施的饮用水或经营该设施的技术人员。机构必须在这些评估期间记录所有受影响的实体。此信息是在后续部分应用影响评估的基础。影响评估应包括使用应用程序和组织本身的个人,同时还根据任务和业务需求确定其他相关实体。此步骤的输出提供了对在线服务的记录说明,包括受影响实体的列表。在线服务的最初影响评估旨在确定与身份相关的失败的潜在不利影响,从而导致一系列保证水平。此步骤应考虑焦点组的历史数据和用户反馈。评估必须包括对潜在危害进行分类,确定影响水平,并分别评估每个用户组的影响水平。组织可以根据此评估选择适当的身份方法和保证水平。每个用户组的输出是定义的影响水平(低,中等或高),作为选择初始保证级别的输入。造成的损害可能会损害组织的声誉,信任关系,形象或导致潜在的未来信任。未经授权访问信息可能会导致个人身份信息(PII)或敏感数据违反,从而导致诸如财务损失,身体或心理伤害以及身份盗窃等次要危害。数字交易的初始保证水平是通过评估在线服务妥协引起的潜在影响来确定的。潜在的影响值包括低,中或高水平,每个级别表明不良反应的严重程度增加。应在分析结束时记录此分数。1。The impact on individuals may also include: - Exfiltration, deletion, or exposure of intellectual property - Unauthorized disclosure of classified materials or controlled unclassified information (CUI) - Financial loss or liability from debts incurred due to fraud - Damage to credit, employment, or sources of income - Loss of accessible affordable housing and financial assets For organizations, potential harms may include: - Costs related to fraud or other criminal activity - Loss of资产,贬值或降低业务能力 - 对劳动力安全的影响和操作能力 - 对环境健康的损害,导致当地居住性的环境健康评估将确定对所确定的实体的影响类别和危害。应从低到高的规模评估整个组织事件的预期后果,以确保对风险的共同理解。任务交付降解的严重性分类如下:有限的有效性,中等程度,显着降低了有效性,对于主要功能的严重或灾难性丧失而高。此外,对信任,地位和声誉的影响是根据不便,困扰或损害评估的,范围从短期影响到长期和严重后果的高低。未经授权的信息访问也可能会根据严重程度而归类为低,中等或高的不良影响。财务损失或责任根据财务影响的程度评估为低,中或高。目标是根据特定身份管理功能的妥协确定每个组的总体风险水平。2。最后,潜在的损失包括生命损失或对人类安全的危险,这分为三类:轻伤和自我解决的健康问题低;适度的受伤风险需要医疗;高高的伤害,创伤或死亡。此处的文章文本涉及建立一个过程,以评估安全漏洞对各种用户组的潜在影响,考虑到实体类型和访问水平等因素。此分析涉及评估潜在后果的严重性,包括未经授权的访问和随后的邪恶动作,以确定每个用户组的单一影响水平。组织必须使用所选影响评估方法组合来为每个用户组计算总体影响得分的一致方法。结果是每个用户组的有效影响水平,受身份管理系统的功能(身份证明,身份验证和联合)的影响。根据初始影响分析的结果选择初始保证级别,组织可以为每个用户组为身份证明,身份验证和联合会选择初始保证级别。此步骤使用伴侣卷[SP800-63A],[SP800-63B]和[SP800-63C]的指导。将根据潜在风险在步骤4中评估和量身定制所选控件。保证级别组织应确定适用于其在线服务的保证水平的类型,以考虑身份证明,身份验证和联合会等因素。- 可疑,确认和报告的欺诈交易的数量。可用三个保证水平:IAL(身份保证水平),AAL(身份验证保证水平)和FAL(联邦保证水平)。每个级别都解决与身份证明,身份验证和联邦失败有关的特定风险。保证级别的描述以下是每个保证级别的摘要: * IAL1:通过从证据或申请人主张中获得核心属性,验证他们对权威来源的核心属性来验证现实世界的存在,并将其链接到个人进行身份证明过程中的个人。iAL2通过引入其他证据验证和身份验证过程来增强安全性,而IAL3添加了训练有素的CSP代表,用于现场参加的校对和生物识别收集。ial1可预防合成身份和损害PII,而IAL2和IAL3为各种攻击提供了更强大的防御能力。AAL1通过单因素身份验证提供了基本的身份验证信心,建议多因素选项; AAL2具有两因素身份验证和防止钓鱼的选择,从而提供了高度的信心; AAL3确保了对公共密码密码协议,基于硬件的身份验证器和抗网络钓鱼解决方案的信心。AAL1旨在阻止以密码为中心的攻击,而AAL2支持多因素身份验证,并具有抵抗网络钓鱼尝试的阻力。fal1允许订阅者在联邦协议中使用受信任身份提供者(IDP)的主张进行身份验证,从而提供有关断言的来源和预期收件人的保证。OMB备忘录M-19-17,2019年5月21日,可在[Nistai]上获得。OMB备忘录M-19-17,2019年5月21日,可在[Nistai]上获得。fal2通过在交易之前建立IDP和依赖方(RPS)之间的信任协议并确保对注射攻击的强大保护措施来建立FAL1。(注意:原始文本是释义的,在使用不同的措辞时维护其核心信息。)FAL控制目标旨在提供针对各种攻击的保护,包括伪造的断言和注射攻击。有三个主要目标:FAL1:防止伪造的断言FAL2:防止伪造的断言和注射攻击FAL3:防止IDP妥协初始保证水平选择每个用户组的初始保证水平,根据组织在线服务的整体影响水平选择了每个用户组的初始保证水平。初始保证水平和相关技术控制是由故障在数字身份函数中的潜在影响决定的。文本讨论了适当的身份证明和身份验证机制对在线服务的重要性,尤其是那些处理敏感或个人信息的人。它强调了组织在实施身份验证水平和机制时考虑法律,监管和政策要求。文本还涉及身份联合会的好处,该联合会可以带来方便的用户体验并避免冗余身份过程。但是,由于基于风险的原因或监管要求,并非所有在线服务都可以使用联邦。更高的保证过程应减轻联合身份体系结构中失败的潜在影响。3。4。通过选择适用的身份功能(例如IAL,AAL和FAL)的初始保证水平来识别基线控制,这将作为从[SP800-63A],[SP800-63B]和[SP800-63C]等伴随卷中选择数字身份控制的基础。此步骤的输出应包括每个用户组的相关XAL和控件,包括具有相关技术和过程控制的初始IAL,AAL和FAL控件。量身定制和文档保证水平以解决身份管理系统的风险,重点是意外的后果和对公平,隐私,可用性和特定环境威胁的影响。组织应采用裁缝来使数字身份控制与其上下文,用户和威胁环境保持一致,考虑到对边缘化或历史上服务不足的人群的不成比例的影响。这包括审查CSP和IDP的影响评估文档和实践声明,以及进行自己的分析,以确保为裁缝提供适当考虑组织的使命和社区。第三方云服务提供商应根据本文档的指南实施其电子认证级别。但是,组织可以灵活地根据特定需求和风险承受能力调整这些水平,同时确保安全的在线服务。他们可能会选择实施与本指南中标准语句不同的量身定制控件。在选择特定在线服务的保证水平时,组织必须进行深入的评估,而不是初步影响评估。5。6。为了促进这一裁缝过程,组织必须在其数字身份认可声明中建立有记录的治理方法,以进行决策和维护所有决策的记录,包括修改后的电子认证水平和补充控制。此外,他们应该有一个跨职能团队分析主题专家,讨论与隐私,可用性,欺诈,权益和其他相关领域有关的潜在风险。裁缝过程应持续进行,结合现实世界数据,以评估选定的电子认证水平控制对任务成功,用户经验,隐私和威胁阻力的影响。这涉及评估与隐私,权益,可用性和威胁性在从初始保证级别选择到最终XAL选择和实施的过渡期间的潜在影响和意外后果。隐私评估过程可能需要针对选定保证水平的基线控制的其他评估,重点是基础信息系统。公平考虑因素涉及评估对所服务社区的潜在影响,考虑到技术水平,设备访问,住房状况,互联网可用性和教育水平等因素。这旨在减轻对边缘化群体的影响,并减少身份管理功能的不成比例要求。可用性评估确保实施初始保证水平不会给所服务社区内的最终用户带来不适当的负担或沮丧。应为具有不同功能的用户提供可访问性的途径。通过评估针对特定威胁的定义保证水平来评估抗威胁性,并考虑到操作环境以及已知策略,技术和程序(TTPS)。机构可以根据其环境适当的威胁姿势降低的姿势来量身定制其评估水平下降或修改基线控制。组织应与与边缘化团体合作的民间社会组织进行协商,以确保裁缝过程解决社区限制。可以根据需要进行其他特定于商业评估,以表示在此过程中未捕获的任务和领域特定的注意事项。这些步骤的结果是一系列风险评估,可为在线服务中的身份管理功能选择适当的保证水平。补偿控制和补充控制措施用于解决组织运营环境中的特定风险。当基线控制不可行时,可以实现这些控件,或者风险评估表明它们可以充分缓解风险。补偿控制的补偿控制是组织代替定义XALS规范控制的管理,运营或技术措施。它旨在解决与基线控制相同的风险,尽管具有不同程度的实用性。组织在无法实施基线控制时可以实施补偿控制,或者确定补偿控制可以根据其组织风险承受能力充分缓解风险。这个概念在历史上被称为白名单。组织还可以修改规范性声明,或在应用程序,数字交易或服务生命周期中其他地方应用任何补偿控件。例如,联邦机构可能会使用联邦背景调查并作为身份证据验证过程的一部分进行检查,以根据这些准则弥补基线控制的要求。一个组织可以在付款应用程序上实施更严格的审计和交易审查过程,在付款应用程序中,由于最终用户人群的证据不足,因此使用了较弱的身份验证。当组织的访问尝试表现出某些风险因素时,必须根据用于确定组织保证水平的相同风险因素来评估其影响。所有组织都必须开发数字身份认可声明(DIAS),以记录其管理的每个在线服务的数字身份风险管理过程的结果。数字身份认可声明(DIAS)至少应包括初始影响评估结果,最初评估的风险水平,量身定制的风险水平和理由,用其残留风险和补充控制弥补控制。联邦机构还必须将此信息纳入[NISTRMF]中所述的信息系统的授权包中。进行进行的评估对于适应威胁行为者,用户能力,期望和需求以及季节性激增和不断发展的任务的变化是必要的。组织还必须监视其程序以解决服务能力差距并适应变化环境。7。持续的改进对于保持威胁和技术领先至关重要,同时突出了程序差距,如果未解决,可能会阻碍身份管理系统的实施。组织必须实施一个持续的评估和改进计划,该计划利用最终用户的输入和绩效指标来为其在线服务。该程序应记录收集的指标,数据源和基于持续改进过程及时措施的过程。应定期评估其有效性,以确保取得成果,并及时解决问题。在此处给出了文章文字,寻找在当今迅速发展的威胁格局中保持新兴威胁和欺诈策略的方法,组织应定期审查其安全措施和欺诈检测能力的有效性。要这样做,他们必须确定关键输入以评估性能,包括集成的CSP,IDP,身份验证者,验证系统以及用户反馈机制,例如投诉过程和威胁分析供稿。组织还需要跟踪欺诈趋势,调查结果和指标,以及公平评估,隐私评估和可用性评估。要记录他们的努力,组织应建立明确的指标,报告要求和身份服务的数据输入,以确保合作伙伴和供应商了解期望。身份管理指标百分比的唯一用户百分比失败了身份验证过程的每个步骤,每种类型的验证完成时间以及各种身份验证器类型的使用率。8。9。尽管特定的指标可能会根据所使用的技术和架构而有所不同,但组织可以参考表4中的推荐集,其中包括通过率,证明率,失败率,放弃率和其他关键绩效指标。身份验证失败,帐户恢复尝试和欺诈检测指标: - 失败的身份验证事件百分比(不包括成功的重新进入)。- 从客户接收的电话数量,以证明失败或其他问题。客户支持指标 - 平均解决投诉或帮助办公桌票的时间长度。- 与身份管理系统问题有关的客户服务代表呼叫的数量。持续改进指标 - 客户满意度调查和补偿请求解决时间的结果。- 用于评估身份管理系统有效性的数据,包括有关用户请求的信息和可能已经通过其他渠道可用的投诉的信息。股权评估指标 - 持续的努力,以提高不同用户群体的权益和可及性。- 支持持续改进并解决身份管理成果的潜在差异的测量策略。应该对组织收集的指标进行彻底分析,以深入了解其在各种人口统计和社区中其身份管理系统的性能。此评估应旨在避免在可能的情况下收集其他个人信息,而是利用对代理数据的知情分析来确定绩效的潜在差异。10。11。12。通过基于可用数据(例如邮政编码,年龄或性别)进行比较和过滤指标,组织可以识别不同用户群体之间绩效的偏差。为了确保股权评估并产生分类的统计估计,鼓励组织咨询OMB报告公平数据的愿景。将流程纳入裁定问题并提供补救措施对于设计支持多样化人群的服务至关重要。这涉及解决可能对个人和社区产生不同影响的服务失败,纠纷和其他问题。访问,网络安全事件和数据泄露的障碍可能会带来现实的后果,并加剧现有的不平等现象。为了防止这种情况,组织必须计划潜在的问题和设计补救方法,这些方法是公平,透明,易于浏览并抵抗剥削尝试的。这需要持续的评估和改进计划,以确定潜在伤害的实例和模式,并利用身份管理以外的业务流程来支持问题裁决和补救。此外,身份管理系统的用户必须有一条表达其关注点的途径,并通过所有人记录,可访问,可访问和可用的问题处理过程寻求补救。发行处理过程所需的治理模型,包括RPS和CSP的角色和职责。专门的功能,用于公正地审查证据,要求其他证据并以纠正措施解决问题。13。14。人类支持人员可以从聊天机器人中介入算法输出,并接受有关数字身份管理系统程序的教育。报告最终用户面临的主要障碍的过程和轨道发现以进行持续评估和改进。将问题处理过程纳入补救活动,鼓励组织在采用之前测试具有目标人群的新实践。身份功能与网络安全,隐私,威胁智能,欺诈检测和计划完整性团队之间的密切协调,以增强业务能力的保护。内部安全和欺诈利益相关者以及外部利益相关者和身份服务之间提供信息的机制。考虑法规和政策限制,建立指南和合同机制,以促进与外部身份服务提供商有效共享的有效数据共享。本节旨在通过对生成实体进行彻底的隐私和法律评估来最大程度地降低风险。对于组织,与各个功能团队合作以实现更好的身份功能成果至关重要。理想情况下,这种协调应在整个风险管理过程和运营生命周期中进行。文档[SP800-63A],[SP800-63B]和[SP800-63C]概述了与每个身份功能有关的特定欺诈缓解要求。身份系统使用人工智能(AI)和机器学习(ML)用于各种目的,例如增强生物特征匹配系统性能,记录身份验证,检测欺诈并通过聊天机器人为用户提供帮助。但是,AI/ML还引入了潜在的问题,例如不同结果,偏见的产出以及现有不平等和访问问题的加剧。要解决这些问题,所有使用AI和ML的组织都必须记录并将其用于依赖系统的用途。CSP,IDP或验证者必须披露利用AI和ML的集成技术,以根据此信息来做出访问决策。使用AI和ML的组织必须使用其技术提供有关模型培训方法,所使用的数据集,更新频率和测试结果的详细信息。此外,这些组织应实施NIST AI风险管理框架([Nistairmf]),以评估AI/ML使用引入的风险。还鼓励他们咨询[SP1270],以实现管理人工智能偏见的标准,并利用来自NIST的美国AI安全研究所的资源。拜登政府关于种族公平和联邦数据的执行命令:对关键文件的审查[EO13985]拜登政府发布了几项旨在通过联邦政府推动种族平等和支持贫困社区的行政命令。这些命令以先前的努力为基础,其中包括在2021年1月提出的13985号行政命令,并着重于推进种族平等和对服务不足社区的支持。随后的执行命令,例如EO 14012(2021年2月)和EO 14058(2021年12月),进一步加强了对新美国人的整合和包容性工作,同时还将联邦客户经验和服务交付转化为重建政府的信任。政府还发布了其他几个关键文件,包括有关“公平数据愿景”(OMB,2022)的报告和联邦信息处理标准出版物(FIPS),涉及联邦信息和信息系统的安全分类(NIST,2004年)。通过增强的访问控制,交付和身份管理改进。AI风险管理框架(AI RMF)版本1.0,由Tabassi E版在2023年提供了人工智能风险管理框架。还提到了信息系统的NIST隐私框架和风险管理框架,以及与安全Internet协议有关的其他各种文档,例如RFC和出版物。Given article text here Archives and Records Administration OTP One-Time Password PAD Presentation Attack Detection PIA Privacy Impact Assessment PII Personally Identifiable Information PIN Personal Identification Number PKI Public Key Infrastructure PSTN Public Switched Telephone Network RMF Risk Management Framework RP Relying Party SA&A Security Authorization & Accreditation SAML Security Assertion Markup Language SAOP Senior Agency Official for Privacy SSL Secure Sockets Layer SSO Single Sign-On SMS Short消息服务SORN记录系统通知T恤可信的执行环境TLS传输层安全TPM可信平台模块TTP策略,技术和过程VoIP Voice-Over-Over-Over-Over-Over-Over-Over-Over-Over-Over-IP XSS交叉站点脚本本节提供了与数字身份相关的术语。在此修订中已更新或更改了各种术语的定义。帐户将多个联合标识符与单个RP订户帐户的组合联系起来或管理这些关联。这些术语中的许多缺乏一个一致的定义,强调了仔细考虑此处定义的方式的重要性。帐户恢复能够重新控制订户帐户及其相关信息和特权的能力。帐户解决方案RP订户帐户与联邦交易和信托协议之外的RP持有的现有信息的关联。激活将激活因子输入到多因素身份验证器中以实现其身份验证的过程。激活因子一种用于使用多因素身份验证器成功身份验证的附加身份验证因子。激活秘密在本地用作多因素身份验证器的激活因子密码。根据政策决定,允许列表允许允许的特定元素列表。在联邦上下文中,这是指允许在没有用户干预的情况下连接到IDP的RP列表。申请人接受身份证明和注册过程的受试者。申请人参考可以保证申请人身份的代表,与申请人相关的特定属性或相对于个人上下文(例如,紧急状态,无家可归)的条件。批准加密算法,一种加密算法,哈希函数,随机位发生器或类似的FIPS批准或NIST征用的技术。主张从IDP到RP的语句,其中包含有关订户身份验证事件的信息,该信息还可以包含订户的身份属性。断言引用一个与RP身份验证中使用的断言相结合的数据对象:身份联合:关键概念给定的文章文本,此处给出的文本文本:解释身份验证过程的文本。身份验证因素三种类型的身份验证因素是您所知道的,您拥有的东西以及您所知道的。每个身份验证者都有一个或多个身份验证因素。身份验证意图通过需要用户干预身份验证流进行认证对索赔人进行身份验证或重新验证的过程。一些身份验证者(例如OTP)将身份验证意图作为其操作的一部分。其他人需要一个特定的步骤,例如按下按钮来确定意图。身份验证意图是反对恶意软件在端点上使用的对策,以便在没有订户知识的情况下对攻击者进行身份验证。身份验证协议在索赔人和验证者之间定义的消息顺序,证明索赔人拥有和控制一个或多个有效的身份验证者以建立其身份,并且可以选择地证明索赔人正在与预期的验证者进行交流。身份验证秘密是攻击者可以用来在身份验证协议中模仿订户的任何秘密价值的通用术语。这些进一步分为短期身份验证秘密,仅在有限的时间内对攻击者和长期身份验证秘密有用,这使攻击者可以模仿订户直到手动重置订户。这等同于“风险分析”。身份验证者的秘密是长期身份验证秘密的规范示例,而身份验证者的输出(如果与身份验证者的秘密不同,通常是短期身份验证秘密)。身份验证者订户拥有和控件(例如加密模块或密码)的某些东西,用于对索赔人的身份进行身份验证。请参阅身份验证器类型和多因素身份验证器。身份验证者结合特定身份验证者和订户帐户之间建立关联的验证者,该帐户允许身份验证器用于对该订户帐户进行身份验证,并可能与其他身份验证者结合使用。身份验证器输出身份验证器生成的输出值。生成有效身份验证器输出的能力证明了索赔人拥有并控制身份验证者。发送给验证者的协议消息取决于身份验证器的输出,但它们可能明确包含它。身份验证者秘密验证者中包含的秘密值。身份验证器类型A类别的认证因子具有共同特征的认证者,例如他们提供的身份验证因素的类型以及其操作的机制。真实性数据源自其所谓的来源。权威来源一个可以从发行来源访问或验证准确信息副本的实体,因此CSP具有很高的信心,即源可以在身份证明期间确认申请人提供的身份属性或证据的有效性。传输层安全性(TLS)是• Source: May Be Authority • Authority Source Decided • Decision Access Grant Automated • Authorized Party Federation • Party Information Release Responsible • Subscriber Attributes Decision Maker • Party IdP Allowlist Used • Communication Systems Connection Direct • Bearer Assertion Identity Proof Presented • Biometric Sample Templates Stored • Biometrics Recognition Automated • Characteristics Biological Behavioral • Blocklist Policy Elements Blocked • Challenge Response Protocol Authentication Verifier • Claimant Subject Identity经过验证•地址声称的物理位置假定在线服务的控件基于其使命,风险承受能力和业务流程,同时还考虑了所服务人群的隐私,可用性和权益。控件包括管理安全,隐私和其他风险的政策,程序,指南,实践和组织结构。补充控制和补偿控制具有解决特定风险的核心属性。身份属性是标识验证所需的,由CSP确定。凭据是通过标识符和其他属性将身份绑定到身份验证器的对象或数据结构。凭证服务涉及信任实体的身份证明,身份验证者注册和凭证管理。可靠的来源提供了准确的身份证据和属性信息,通常是从多个经过验证的来源获得的。跨站点请求伪造发生时,当经过身份验证的订户因恶意网站攻击而在不知不觉中在RP中引起不必要的动作。- 通过防止未经授权的更改来维持数据完整性。跨站点脚本允许攻击者向网站注入恶意代码,从而通过显示未经启发的用户提供的数据来损害网站和客户端之间的数据传输。**目的**:指南旨在满足[SP800-57PART1]表2中概述的最低要求。**关键要求**: - 确保加密模块实现批准的安全功能,包括算法和密钥生成。**属性**: - 派生属性值定义了有限的身份方面而不揭示原始值。**身份验证**: - 数字身份验证建立了对呈现身份的信任。**身份**: - 一个数字身份包含上下文中主题独有的属性。**接受声明**:记录风险管理过程,包括影响评估和保证水平。**签名**:利用不对称键来实现真实性,完整性和非替代性。**交易**:通过用户和系统之间的离散事件来支持业务目的。**拆卸性**:处理PII,而无需与系统操作需求之外的个人或设备关联。**身份验证(电子认证)**:相当于数字身份验证。**端点**:用于访问网络上数字身份的设备,包括笔记本电脑和手机。**注册**:提供否定身份申请人的帐户和身份验证者以持续访问的过程。**熵**:衡量通常以位表达的秘密值的不确定性。这些因素被认为是为了确保遵守联邦要求。**权益**:一致,公平,公正,公正和公正的对待所有个人,尤其是那些服务不足的社区的人。影响联邦计算机系统标准制定和实施的因素包括身份验证,互操作性以及持续的贫困或不平等。国家标准技术研究所(NIST)开发了联邦信息处理标准(FIPS),以满足不可接受的行业标准,以满足令人信服的政府需求。在身份管理的背景下,联合标识符是指发行其主张的身份提供者的标识符和身份提供者的标识符的组合。这种独特的组合标识了联邦交易中的单个订户。联合会是一个过程,可以在多个网络系统中共享身份和身份验证信息。联邦保证水平(FAL)将用于将身份验证事件和订户属性传达给依赖方(RP)的方法。联邦协议是促进网络系统之间交易的技术标准。联合代理(也称为“经纪人”)充当一组身份提供者(IDP)(IDP)和另一组RPS的逻辑IDP的逻辑RP。联邦交易涉及使用特定订户的特定协议对身份验证进行处理。此过程将主张从IDP传达到RP,以确保安全的通信。前渠道通信依赖于通过中介机构传递消息,例如通过用户的浏览器重定向。哈希函数将任意长度字符串映射到固定长度符号字符串,提供单向和抗碰撞的属性。标识符是在特定上下文中与各个实体关联的唯一数据对象。身份API为RPS提供了受保护的访问权限,以访问特定订户的属性。身份保证水平(IAL)传达了对受试者所声称的身份的信心程度。身份验证涉及通过物理或数字手段(例如驾驶执照或移动ID)确认声明信息的真实性和准确性。身份提供者为订户创建主张,然后将其传输到依赖方。身份解决过程收集有关申请人的信息,以唯一地识别特定人群中的个人。身份验证攻击。发行来源生成可以用作身份证明的数据和数字证据。基于知识的验证过程验证个人对个人或私人信息的知识,以验证其声称的身份。可管理性是指粒状管理个人身份信息的能力,包括更改和删除。消息身份验证代码提供了真实性和完整性保护,但不提供非替代保护。移动代码通常通过网络或物理媒体从其源传输到另一个系统以进行执行。多因素身份验证系统需要多种不同类型的身份验证因子才能成功登录,可以使用多因素身份验证器或组合提供不同类型因子的单因子身份验证器来实现。要激活设备,必须通过像Internet这样的开放网络连接人类用户。此连接允许参与身份验证的各方之间的消息交换。该网络被认为容易受到各种攻击的攻击,包括模仿和窃听。在安全协议中使用nonce作为一个独特的值,无法用相同的密钥重复。非替代可确保个人不能否认执行交易。离线攻击涉及分析单独系统中被盗的数据或文件。一对一的比较将生物识别样本与参考数据匹配,并产生得分。在线攻击操纵身份验证渠道,在线猜测攻击涉及反复试图通过猜测身份验证器值登录。通过网络远程访问在线服务。生成了一个成对的假标识符,以在RP处进行特定使用。密码是长长的,令人难忘的序列,用于增加安全性。密码是身份验证身份的记忆秘密。引脚由十进制数字和个人信息组成,可以链接到区分或跟踪个人身份。处理,跟踪,产生,更改,利用,共享,转移或摆脱个人信息。制药攻击者,攻击者损坏了像DNS这样的服务,并使用户转到假网站,而不是真正的网站,这可能会使他们揭示敏感信息,下载不良软件或为欺诈做出贡献。网络钓鱼攻击,通过访问看起来像真实的伪造网站,用户被诱骗了揭示其密码或其他重要信息。网络钓鱼阻力是身份验证系统保持秘密和有效响应的能力,而无需依靠用户的警惕。物理身份验证者您拥有的东西证明了您拥有的东西,该物理验证过程中使用了它。拥有和控制身份验证者能够在身份验证协议中使用它。练习声明在身份验证过程中如何共同工作的正式陈述(例如,CSP或验证者)。它通常会解释他们的政策和实践,并可能具有法律约束力。可预测性使人们,所有者和运营商能够通过信息系统对个人信息及其处理做出可靠的假设[NISTIR8062]。非对称密码学中的私钥,私钥是用于数字签名和解密的秘密。在对称密码学中,它是加密和解密的相同密钥。处理某些个人信息的处理可以包括收集,跟踪,生成,转换,使用,共享,转移或摆脱[NISTIR8062]。演示攻击试图通过介绍假信息来欺骗生物识别系统。演示攻击检测这些攻击的自动检测。处理助理的某人帮助进行校对过程但没有做出决定或评估风险(例如翻译,转录或可访问性支持)。验证代理是经过培训的CSP的代理,以帮助进行身份证明会议并做出有限的基于风险的决策 - 例如对身份证据进行身体检查并进行身体评估。身份验证的证据:一种分析个人识别信息收集,使用,共享和维护的方法,以确保法律合规。受保护的对话使用共享的秘密对两个方之间的消息进行加密,从而通过身份验证者验证彼此的身份。配置API安全访问了帐户管理的多个订户身份属性。假名是用于标识的替代名称,而假名标识符是唯一但毫无意义的IDS与单个用户关联的ID。公共键验证签名或加密数据,并证明标识符将标识符绑定到公共密钥,以确保唯一的控制。公共密钥基础设施管理证书发行,维护和撤销。重新验证确认在延长会议期间持续的订户存在。依靠各方信任验证者对交易或访问赠款的身份主张。远程流程发生在连接的设备上,而重播攻击涉及重复使用捕获的消息来模仿索赔人。受限制的身份验证者通过每个身份验证会话来抵抗重播攻击。该技术的使用带有错误身份的额外风险,使其遵守进一步的规则。风险评估是识别,估计和优先考虑组织运营(例如其使命,职能,图像或声誉),资产,个人和其他由系统运营引起的资产,个人和其他组织的潜在危害的过程。风险评估是管理风险的一部分,并考虑到威胁和脆弱性分析以及安全控制所提供的缓解。风险管理涉及一个程序及相关流程,该程序管理影响组织运营的信息安全风险(包括其使命,职能,图像,声誉),资产,个人和其他组织。这包括为风险相关的活动设置上下文,评估风险,响应确定的风险以及随着时间的推移监视风险。在联合系统中,RP订户帐户是由RP根据IDP对订户帐户的观点创建和管理的。RP订户帐户与一个或多个联邦标识符相关联,允许订户通过与IDP的交易访问其帐户。盐是加密过程中使用的非代理值,以确保攻击者无法重复使用计算结果。安全域是指在常见管理和访问控制下的系统。隐私机构高级官员(SAOP)确保机构符合隐私要求,并管理与处理PII相关的风险。他们还保证该机构考虑了涉及PII的所有行动和政策的隐私影响。会议从身份验证事件开始,并以会话终止事件结尾。会话是订户和端点(RP或CSP)之间的持续交互。会议是通过使用订户软件向RPS提出的会话秘密确保的。当攻击者在成功的身份验证交换后插入索赔人和验证者之间时,会发生会话劫持攻击。他们可以作为订阅者或验证者姿势,控制会话数据交换。在身份验证中使用了共享的秘密,并为订户和验证者所知。侧通道攻击利用物理密码系统信息泄漏,例如时机,功耗,电磁和声学排放。单因素是指使用单个方法(例如密码)进行认证,而多因素涉及组合多种方法(例如密码,生物识别数据或安全问题)。仅需要一个身份验证因子的系统 - 您知道,拥有或正在验证的系统称为单因素身份验证。单登录(SSO)使经常使用联邦协议的一个帐户和一组身份验证者访问许多应用程序。社会工程学诱使人们通过获得信任来提供敏感信息。主题可以是一个人,组织,设备或网络,但在这种情况下,它是自然的人。订户是参加CSP身份服务的人,其中包含所有注册验证者和信息的订户帐户。为了提高安全性,可以添加补充控制措施来应对特定的威胁或攻击。对称密钥用于加密和解密,而同步织物存储,传输或管理对用户设备不本地化的可同步身份验证器的身份验证键。合成身份欺诈使用个人身份信息的混合物来创建虚假的人或实体,以实现不诚实的行为。记录系统(SOR)是有关代理机构控制下个人的记录集合,记录通知系统在联邦登记册中描述了这些系统。裁缝涉及根据用户群体影响,共同控制和范围考虑的考虑来修改安全控制。令牌和身份验证者的意思是同一件事 - 验证您的身份的东西。