我们引入了一个健壮的方案,用于长距离连续变量(CV)测量设备独立的(MDI)量子密钥分布,在该分布中,我们在通过不受信任的继电器介质进行通信的遥远各方之间采用了选择后。我们执行了一个安全分析,该分析允许每个链接的一般透射率和热噪声方差,我们假设窃听器会执行集体攻击并控制通道中的过量热噪声。引入选择后,当事方能够在超过现有CV MDI协议的距离上维持秘密关键率。在中继位置位置的最坏情况下,我们发现当事方可以在标准光学纤维中牢固地沟通14公里。我们的协议有助于克服先前提出的CV MDI协议的率距离限制,同时保持其许多优势。
摘要 - 在本文中,考虑了非线性非线性系统的最佳控制问题。提出了一个非线性干扰观察者(NDO)来测量系统中存在的不存在的不存在。干扰与控制信号(所谓的不匹配的干扰)的干扰很难直接在控制通道内拒绝。为了克服挑战,通过衰减其对输出渠道的影响,实施了广义的基于观察者的补偿器来解决不确定性补偿问题。实时通过增加输出跟踪错误来增强系统状态,我们开发了一个复合参与者批判性的加固学习(RL)方案,以近似最佳控制策略以及与赔偿系统有关的理想价值函数,通过求解汉密尔顿 - 雅各布蒂 - 雅各布 - 雅各布·贝尔曼(HJB)方程。通过使用系统的已知模型的记录数据在本文中应用,以通过取消探测信号的影响来增强系统的鲁棒性。仿真结果证明了所提出的方案的有效性,为二阶模型中的输出跟踪问题提供了最佳解决方案,这是不匹配的干扰。
摘要 本文概述了下一代铁路通信(也称为高速列车 (HST) 通信)所面临的挑战和最先进的物理层增强设计。由于恶劣的传播环境和极端条件、专用铁路应用对延迟和可靠性的严格要求以及由于监管而导致的频段稀缺,高速列车的物理层设计必须与其通用网络对应物进行调整。在本调查中,我们研究了传统的多输入多输出 (MIMO) 系列技术(例如波束成形、多小区 MIMO 和中继)如何增强高速列车的物理层性能。还从不同角度分析了新型可重构智能表面 (RIS) 技术辅助的物理层增强。还回顾了侧链中列车到基础设施 (T2I) 和列车到列车 (T2T) 通信的专用控制通道、参考信号、波形和数学设计。最后,简要介绍了人工智能 (AI)/机器学习 (ML) 辅助的 HST 物理层设计。还提出了几种有前景的研究途径。
飞机设计本质上是一项多学科工作,在此过程中,多个工程师团队之间必须交换数据和信息,每个团队都拥有特定领域的专业知识。管理协作组之间的数据传输、可能的翻译和存储非常复杂且容易出错。采用标准化、以数据为中心的方案存储所有数据可提高一致性并降低误解和冲突的风险。为了有效实现这一点,必须首先努力在分析模块和数据档案之间开发合适的接口。此外,设计过程的每个阶段对设计和分析工具的保真度和分辨率都有不同的要求。对于稳定性和控制分析以及飞行模拟,需要生成气动力、力矩和导数的查找表。不同的飞行分析工具需要不同的表格/输入格式。例如,代尔夫特理工大学开发的飞行分析器和模拟器 PHALANX [ 1 – 4 ] 需要一组三维力和力矩系数表,每个控制通道单独作用。多保真度气动建模旨在以最佳的计算资源分布覆盖整个飞行包线的飞行状态参数空间。这又需要一个标准化的、以数据为中心的方案来托管数据,这些数据可用于可变的保真度。标签 Li (其中 i = 0、1、2、3)用于对计算模型及其软件实现的保真度级别进行分类:
API 应用程序编程接口 ASN.1 抽象语法符号 1 BSA 基本应用程序集 BTP 基本传输协议 CA 协作感知 CAM 协作感知消息 CCH 控制通道 DCC 分散拥塞控制 DE 数据元素 DENM 分散环境通知消息 DF 数据帧 FA-SAP 设施/应用服务接入点 GN 地理网络 HF 高频 HMI 人机界面 I2V 基础设施到车辆 ID 标识符 ISO 国际标准组织 ITS 智能交通系统 ITS-G5A ITS 频段 5,875 GHz 至 5,905 GHz 专用于安全相关应用 ITS-S ITS 站 ITS-ST ITS 站时间 LDM 本地动态地图 LF 低频 MF-SAP 管理/设施服务接入点 MIB 管理信息库 MSB 最高有效位 N&T 网络和传输层 NF-SAP 网络和传输/设施服务接入点 OSI 开放系统互连 PCI 协议控制信息 PDU分组数据单元 PER 打包编码规则 POTI 位置和时间管理 RSU 路侧单元 SAE 汽车工程师协会 SAP 服务接入点 SF-SAP 安全设施 - 服务接入点 SHB 单跳广播
飞机设计本质上是一项多学科工作,在此过程中,多个工程师团队之间必须交换数据和信息,每个团队都具有特定领域的专业知识。管理协作组之间的数据传输、可能的翻译和存储非常复杂且容易出错。采用标准化、以数据为中心的方案来存储所有数据可提高一致性并降低误解和冲突的风险。为了有效地实现这一点,必须首先努力在分析模块和数据档案之间开发合适的接口。此外,设计过程的每个阶段对设计和分析工具的保真度和分辨率都有不同的要求。对于稳定性和控制分析以及飞行模拟,需要生成用于空气动力、力矩和导数的查找表。不同的飞行分析工具需要不同的表格/输入格式。例如,代尔夫特理工大学开发的飞行分析器和模拟器 PHALANX [ 1 – 4 ] 需要一组三维力和力矩系数表,每个控制通道单独作用。多保真气动建模旨在以最佳的计算资源分配覆盖整个飞行包线的飞行状态参数空间。这又需要一个标准化的、以数据为中心的方案来托管数据,可用于各种
超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
自 20 世纪末首次在原子气体中实现玻色-爱因斯坦凝聚以来,超冷原子气体已成为研究各种量子现象的广泛采用的平台。近年来,人们越来越关注具有大磁偶极矩的物质,因为这些物质与更常见的碱金属相比表现出更强的长程相互作用。镝的磁矩约为 10 𝜇 𝐵 ,是磁性最强的原子物质,因此已成为研究长程(偶极-偶极)相互作用与接触相互作用竞争或占主导地位的系统的理想平台。在本文中,我描述了一种新型镝量子气体机的设计和优化。除了详细描述该装置的组件及其性能外,我还详细描述了用于提高磁光阱 (MOT) 负载率的“角度减速”技术的特性和优化。我还详细描述了使用该装置生产和检测第一个玻色-爱因斯坦凝聚体 (BEC) 的过程。本论文还详细描述了用于镝实验的新控制硬件和软件的开发,但可以(并且已经)用于其他量子气体实验。在硬件方面,我讨论了高性能模拟电压控制通道的设计,这些通道比市售的替代方案更具优势。在软件方面,我讨论了我设计的实验室控制和记录数据库系统,它既扩展了我们的控制软件的功能,又简化了实验室数据的存储和可访问性。
由量子噪声造成的一般量子统一操作员被复制并插入一个相干超级式通道中,超过两个路径在嘈杂的单位上跨越探测器,并由控制量子驱动。对探针控制量子对的关节状态上的超塑通道进行的转换实现进行了表征。然后对超座通道进行特定分析,以分析嘈杂单一的相位估计的基本计量学任务,并由Fisher信息,经典或Quanth评估。与常规估计技术进行了比较,并通过最近研究了具有无限因果关系的量子切换通道,该通道最近研究了相似的相位估计任务。在此处的分析中,第一个重要的观察结果是,尽管它从未直接与估计的单一估计的单一相互作用,但可以单独测量它以进行有效的估计,同时丢弃与单一相互作用的探针Qubit。此属性也带有开关通道,但不可访问的技术无法访问。在一般条件下,此处表征了控制量子标筒的最佳测量。第二个重要的观察结果是,噪声在将控制矩偶联到单位的耦合中起着至关重要的作用,并且即使使用完全去极化的噪声,控制量矩形在非常强的噪声下仍可以进行相位估计的操作,而常规估计和切换通道在这些条件下也不正常。结果扩展了对相干控制通道的能力的分析,该通道代表可利用量子信号和信息处理的新设备。
•确定当前和潜在的海龟筑巢地点以及栖息地筑巢和喂食地点,以禁止在一年中活跃的时候在这些地区刮擦和修饰,dog带走和4轮驱动器。考虑迁徙和居民shorebird物种。•识别,保护和恢复重要的迁徙栖息地。•计划和完整的维护和基本工作与3月至8月之间的迁徙鸟类栖息地相邻,当时鸟类在北半球,作为其年度移民的一部分。•修改开发控制计划,包括在指定地点或距离内(例如距离海岸线1公里的开发应用程序)的光污染计划的要求,该应用程序被同意当局认为是必要的。•使用国家光污染指南,审核,评估和管理人造光对本地野生动植物的影响,包括海龟,海鸟和迁徙岸鸟类,并修订了用于延长城市发光的前沿开发的照明规格。•确定所有河口中印度太平洋瓶颈海豚或其他近海海豚种类的休息区域,例如澳大利亚座头海豚。限制现场的相邻开发和活动。•在渔业空间数据门户的“河口大型植物”下识别现有的海草草地,并考虑在规划前岸和城市发展时,请考虑将Meadows的未来扩展区域用于适当的浅层,受保护的位置。•制定河口宽的前岸结构策略,前岸开发是一个重大威胁。•进行盐尔什地区的康复工作,控制通道和控制排水,而不是通过敏感的濒临灭绝的生态群落。请勿将盐泥区域用作管子末端或修改区域以成为沉积物或生物遗迹。