许多公司都在研究聚变推进概念,包括加州理工学院的衍生公司 Helicity Space,该公司正在开发一种可扩展的脉冲概念,可直接利用聚变产物。其他公司包括由高盛和其他公司投资 8.8 亿美元的 TAE Tech、由盖茨和其他公司投资 2.5 亿美元的 Commonwealth Fusion Systems、由杰夫·贝佐斯和其他公司投资 2 亿美元的不列颠哥伦比亚省的 General Fusion、由天使投资者投资 8000 万美元的 Helion Energy 以及由雪佛龙投资 1000 万美元的 Zap Energy。鉴于即使在实验室规模下也未实现持续的长时间聚变,因此与 NTP 系统相比,聚变仍然明显不成熟。然而,基于其在任务上的优势、商业公司对较新的设计和快速生产技术的使用、以及它们最近获得风险投资基金的验证,聚变推进最终可能成为中远期可靠的技术。
关于Cowan Nelson Cowan博士是密苏里大学策展人的杰出心理科学教授。他专门研究工作记忆,牢记的少量信息,用于语言处理和各种问题解决。要克服对于在单独的框中发生不同功能的信息处理模型产生的概念上的困难,Cowan提出了一个更具有机的“嵌入过程”模型。在其中,在工作记忆中持有的表示形式包括长期记忆中保持的表示的激活子集,在当前注意力的焦点中以更综合的形式保持了较小的子集。其他工作也在工作记忆能力和科学方法的发展增长方面。根据Google Scholar的说法,他的工作由美国国立卫生研究院(NICHD)自1984年以来(主要是NICHD)资助。这项工作导致了超过300篇经过同行评审的文章,超过60个书籍章节,两本唯一的书籍和五本编辑的书。
摘要 数千年来,人类一直梦想着探索地球和太阳系以外的空间。本文讨论了如何利用当今或不远的将来的技术实现这种星际旅行,特别关注推进技术。首先,本文考虑了星际旅行背后的动机,即它将提供有关系外行星和星际介质的大量科学信息。然后,本文讨论了使用传统航天器进行星际旅行时面临的许多挑战,包括距离、时间和能量方面的挑战。然而,许多可能的替代推进技术解决了这些问题。本文讨论的三种技术是离子发动机、核脉冲推进和光帆。本文使用全面的 Pugh 矩阵分析了每种技术的适用性。本文得出结论,光帆是星际任务的最佳选择,因为它们具有高比冲和最终速度。利用光帆技术开发了在 50 年内飞越我们最近的恒星比邻星的基础任务概念。任务概念包括讨论推动光帆所需的激光器、探测器的大小和质量、机载仪器、任务时间表、通信、部署,最后是风险分析。本文最后介绍了创建此类任务所需的未来进步和研究。
合作伙伴和致力于咨询委员会的人开始强劲,随着项目的发展,将会变得更好,并可以更直接地吸引受益人和当地社区,如治理项目中所述。枢纽已指定了首席成员本·富兰克林(Ben Franklin)首席科学官安东尼·P·格林(Anthony P. Green)博士为Propel的里约。(恢复在边缘的关键人员下载)。除了其所有组织合作伙伴的财务和计划承诺外,该枢纽还获得了州政府(PA和DE),费城市,首席成员Ben Franklin和Sub-Awadees Biophy,Drexel,Drexel,Philadelphia儿童医院和Pier Ancliptium的直接匹配资金。许多合作伙伴机构都从NIH,NSF,NIST,EDA,SBA,DOL以及州以及专注于技术,小型企业援助和劳动力的州和地方机构中获得了积极的赠款。虽然不与EDA匹配,但本·富兰克林(Ben Franklin)的直接投资对新兴技术公司的直接投资对于新泽西州和DE的其他州计划对于推进新的和新兴的技术公司至关重要。枢纽还预计将获得其他私人基金会和行业合作伙伴的赠款,这对于五年筹资周期以外的枢纽的可持续性至关重要(请参阅第7节,可持续性)。表2:就职联盟成员和合作伙伴(Bold Lead)
任务说明美国国家科学、工程和医学院将召集一个特设委员会,确定开发和演示未来探索任务所需的空间核推进技术的主要技术和项目挑战、优点和风险。事实证明,核推进可以为人类快速前往火星提供潜力,单程时间少于 9 个月,包括在火星表面停留的总往返时间少于 3 年。委员会还将确定每项技术的关键里程碑和顶层开发与演示路线图。此外,委员会还将确定成功开发每项技术可实现的任务。具体感兴趣的空间核推进技术包括:1. 高性能核热推进 (NTP),将氢推进剂加热到 2500K 或更高,产生至少 900 秒的比推力。 2. 核电推进 (NEP) 将热能转换为电能,为等离子推进器提供动力,用于高效快速地运输大型有效载荷(例如,功率水平至少为 1 MWe 且质量功率比(kg/kWe)远低于当前 NEP 系统水平的推进系统)。 行动计划 本研究应检查任务说明中所述的开发和演示 NTP 和 NEP 系统的优点和挑战。此项审查应考虑以下因素: 关键的技术和计划挑战和风险; 全尺寸系统级地面演示测试的选项; 放弃地面演示测试而进行飞行演示测试的优缺点; 开发一种燃料元件形式或其他反应堆子系统的前景,这些子系统可能对 NTP、NEP 和国防部战略能力办公室正在考虑开发的移动式 1-10 MW 功率反应堆中的至少两个是通用的; 选择高浓缩铀(HEU)而不是高含量低浓缩铀(HALEU)作为裂变材料所涉及的技术、计划和政策考虑; 美国国家航空航天局、能源部和工业界开发关键子系统技术以准备进行任务注入的能力(即技术就绪级别 6);以及 关键里程碑和顶层开发及演示路线图。
•“ Proto-Flight”测试代表了一个测试家族,该家族的风险降低到客户所接受的水平,并且可能不等于针对较大的遗产航天器定义的全套环境测试。它可能包括特定于客户定义任务的测试。测试结果已记录/发布。•系统证明与预期的空间和发射环境完全兼容,包括相关的辐射,热量效量,电晕放电和启动振动水平•软件接口完全识别,开发和验证了原型级别的保真度,并在原型级别上进行了验证•推荐•推荐到TRL 6 peer审查,
目录: 我们的历史................................................................................ ..............4 我们的使命................................................................ .................................5 应用领域和运营商................................................. .................................6 OTUS U135............................................................... ..............................8 OTUS U170................................................................. ..............................10 OTUS U200 ....................................................................................12 OTUS U250 ........................................... .........................................14 配件................................................ .............................................16
BOL 开始使用(参考燃料电池) CAPEX 资本支出 CH3OH 甲醇 CBG 压缩沼气 CNG 压缩天然气 CO 一氧化碳 CO2 二氧化碳 CO2-eq 二氧化碳当量 DF 双燃料 DWT 载重量吨位 ECA 排放控制区 e-fuel 电燃料 EU 欧盟 EV 电动汽车 FAME 脂肪酸甲酯(=生物柴油) FC 燃料电池 FCV 燃料电池汽车 FEED 前端工程设计 FT 燃料 费托燃料 GHG 温室气体 H2 氢气 HCl 氯化氢 HF 氟化氢 HHV 高热值 HVO 氢化植物油(=可再生柴油) ICE 内燃机 IMO 国际海事组织 IRR 内部收益率 LBG 液化生物甲烷 LBSI 稀薄燃烧火花点火(发动机) ICE 内燃机 LH2 液化氢 LCA 生命周期分析 LHV 低热值 LNG 液化天然气天然气 LPG 液化石油气 NOx 氮氧化物 OPEX 运营支出 PEM 聚合物电解质膜 PM 颗粒物 PV 光伏 RED 可再生能源指令 RORO 滚装船 ROPAX 滚装船和客船 SNG 合成天然气
• “原型飞行”测试代表了一系列将风险降低到客户可接受水平的测试,可能不等同于为大型传统航天器定义的全套环境测试。它可能包括针对客户定义的任务的测试。测试结果已记录/发布。• 系统证明与预期的空间和发射环境完全兼容,包括相关的辐射、热真空、电晕放电和发射振动水平• 软件接口完全识别、开发和验证,达到原型级保真度• 直接测量系统寿命• 建议:同行评审以验证进入 TRL 6