*m_correiadasilva@ff.up.pt,erersilva@fc.ul.pt Marine Biofouling是淹没表面上海洋生物耗材的自发和不需要的殖民地,负责对生态和经济影响不利,尤其是在海洋行业部门。当前的防污溶液主要基于有毒和持续的生物活性剂的释放,将其作用扩展到非目标生物群,并导致生态系统的严重副作用。因此,国际法规一直在限制甚至禁止使用有效代理,从而加剧了对环保替代方案的需求。这项工作的目的是探索胆汁酸作为一种具有防染料活性的新型可生物降解支架,并通过化学合成,生产一系列具有不同亲脂性的胆汁酸衍生物,以评估和优化其防污性能。最有希望的胆汁酸是一种从脱氧胆酸获得的合成衍生物,在Mytilus Galloprovincialis幼虫(贻贝幼虫)的抗盐分测定中,在甲氧胆酸中获得3.71μm的EC 50。通过将其在不同的聚合物涂层配方中掺入,即商业有机硅的海洋油漆,进一步评估了该脱氧胆酸对海洋表面保护的防突出潜力[1]。从商业可用且负担得起的原材料中增加了一步合成,该胆汁酸衍生物具有很高的兼容性和具有证明具有抗巨口活动的抗染色涂层的能力。A. R. Neves,J。Almeida和E. R. Silva分别为SFRH/BD/114856/2016,SFRH/BD/99003/2013和SFRH/BPD/88135/2012分别承认FCT。FCT通过UID/MULTI/04046/2019(BIOISI)(BIOISI)和UID/MULTI/04423/2019(CIIMAR)以及欧洲区域发展基金(ERDF)在PT2020和Project Project PTDC/AAG-TEC/0739/MOCT下,对这项工作的认可支持。 (PIDDAC)和欧洲地区发展基金(ERDF)通过竞争(POCI-01-0145-FEDER- 016793)和RIDTI-Project 9471)。参考
通过分子束在低温下(171-258 c)在分子束外延(171-258 c)上,通过分子束外延(171-258 c)在GAAS底物上生长了通过分子束外延在GAAS底物上生长。 高分辨率X射线衍射揭示了所有样品中的良好结晶度。 原子力显微镜显示出原子光滑的表面,最大粗糙度为1.9 nm。 530.5 cm 1在拉曼光谱中的碳的局部振动模式在ge 1 – x – y sn x c y样品中的替代c掺入。 X射线光电子光谱验证与SN和GE的碳键合碳键合,而没有SP 2或SP 3碳形成的证据。 未检测到与替代碳相相对应的常见的拉曼特征。 此外,在扫描电子显微镜中看不到Sn液滴,说明了C和SN掺入中的协同作用以及GE 1-X-X-YN X C Y活性区域对基于硅的激光的潜力。通过分子束外延在GAAS底物上生长。 高分辨率X射线衍射揭示了所有样品中的良好结晶度。 原子力显微镜显示出原子光滑的表面,最大粗糙度为1.9 nm。 530.5 cm 1在拉曼光谱中的碳的局部振动模式在ge 1 – x – y sn x c y样品中的替代c掺入。 X射线光电子光谱验证与SN和GE的碳键合碳键合,而没有SP 2或SP 3碳形成的证据。 未检测到与替代碳相相对应的常见的拉曼特征。 此外,在扫描电子显微镜中看不到Sn液滴,说明了C和SN掺入中的协同作用以及GE 1-X-X-YN X C Y活性区域对基于硅的激光的潜力。。高分辨率X射线衍射揭示了所有样品中的良好结晶度。原子力显微镜显示出原子光滑的表面,最大粗糙度为1.9 nm。530.5 cm 1在拉曼光谱中的碳的局部振动模式在ge 1 – x – y sn x c y样品中的替代c掺入。X射线光电子光谱验证与SN和GE的碳键合碳键合,而没有SP 2或SP 3碳形成的证据。未检测到与替代碳相相对应的常见的拉曼特征。此外,在扫描电子显微镜中看不到Sn液滴,说明了C和SN掺入中的协同作用以及GE 1-X-X-YN X C Y活性区域对基于硅的激光的潜力。
在最近的一份报告中,JRC描述了一种提供这种透明度的方法学方法:在“ -1/+1”方法中,基于生物的产品的碳足迹通过从大气中撤回的CO 2的数量降低,并将其作为碳掺入Bio-Mass衍生材料中。这种评估方法通过计算大气碳的掺入来为降低生物基产品的PCF提供透明度,而在该阶段1中,生命末期的排放反映了。但是,我们了解委员会考虑的碳建模选项之一是在“前景级别”上对“ -1/+1方法”的使用有限,同时在“背景级别”应用“ 0/0方法”,其中在生命周期的任何阶段没有学分或好处。
经常使用极性聚乙烯(PE)引入极性基团,以增加PES极性以实现,例如与其他极性材料的兼容性。这可以通过聚合后的修饰或直接通过乙烯基单体(如丙烯酸酯,乙烯基酮或其他)共聚来实现。1-7后来的方法产生侧链官能团。通过比较,聚乙烯链生长过程中一氧化碳掺入可以提供链内酮基团。除其他外,少量此类酮单元可以以理想的光降解性赋予材料,以减少不雄厚的聚乙烯废物的有问题的环境持续性。8可以长期以来一直在乙烯聚合过程中掺入少量的一氧化碳,从而访问与链型酮单元(酮)的线性HDPE型聚乙烯(酮),因为通常由于乙烯-CO共聚的结果而在乙烯聚合过程中长期存在,因为乙烯-CO共聚的结果是在交替的多酮中,因此由于合成了二氧化碳的偏好。9,10此类酮PE材料仅通过非替代共聚11-13才通过晚期磷酸苯酚14-20 Ni(II)配合物催化。由于它们的高分子量(高达M W 400.000 g mol -1; m n 200.000 g mol -1),这些聚合物是可以加工的,并且在其机械性能中具有与商业高密度聚乙烯(HDPE)的机械性能相同。188同时,这些材料由掺入的链内羰基提供了光降解。11,18
Sutro Cell Free 2010:100L CF 演示 2011:mAbs 2013:nnAA 掺入和 ADC 2014:bsAb 和 ADC 2016:CF GMP 制造 2024:4,000L GMP 运行
将纳米技术与聚合物整合的最令人兴奋的前景之一是机械性能的增强。纳米燃料(例如碳纳米管,石墨烯和纳米电池)可以显着提高聚合物基质的强度,韧性和弹性。例如,将碳纳米管掺入聚合物复合材料中可以创建具有与金属相当但重量的一小部分的抗拉力强度的材料。这些高级材料有望彻底改变从航空航天到汽车工程的行业。纳米技术还可以使聚合物具有优质和电导率的聚合物的发展。传统聚合物通常是绝缘剂,但是通过掺入石墨烯或金属纳米颗粒等纳米材料,研究人员可以创建更有效地进行热和电力的聚合物。此功能对于在电子设备中的应用至关重要,在该电子设备中,聚合物基材料可用于柔性电子设备,传感器和能源存储系统[3]。
官能化石墨烯的有前途的方法之一是将杂原子掺入碳SP2晶格中,因为事实证明,它是一种可控制地调整石墨烯化学的有效且通用的方法。我们提出了与B掺杂剂选择性掺杂石墨烯的独特无污染方法,在标准的CVD生长过程中,它们从大部分Ni(111)单晶体中创建的储层中掺入一层,从而导致清洁,多功能和有效的方法用于创建B-poped Chapeene。我们结合了实验性(STM,XPS)和Theo Retical(DFT,模拟的STM)研究,以了解替代性B DOP蚂蚁的结构和化学性质。与先前报道的FCC位点中的替代B一起,我们首次观察到另外两个缺陷,即在顶部位点中替代B,而在八面体地下位点中的间隙B。广泛的STM在遗迹中证实存在于经过准备的B掺杂的Gra Phene中B掺杂剂的低浓度区域的存在,表明硼龙掺入不均匀。在两个替代部位之间,在低浓度的B掺杂区域中没有观察到偏好,而在高B浓度区域中,优先选择了Sublattices之一,以及缺陷的对准。这将在生长的B掺杂石墨烯中产生不对称的sublattice掺杂,从理论上讲,这将导致显着的带隙。
摘要:酶是许多工业应用必不可少的生物催化剂,但稳定性,选择性和受限的底物识别当前的使用限制。尽管酶工程在克服这些局限性方面的重要性,但通常会受到从天然来源衍生的酶的复杂建筑的挑战。计算方法的最新进展已使具有特定功能位点的简化支架的从头设计。这样的脚手架可能是酶工程平台的有利优势。在这里,我们提出了一种从从GH101酶家族的乙酰基乳糖苷酶活性位点(GH101酶家族的糖苷水解酶)的简化支架的从头设计的策略。使用Trrosetta幻觉,基于深度学习的结构预测的迭代循环以及蛋白质序列设计,我们设计了具有290个氨基酸的蛋白质,同时将分子量纳入了290个氨基酸,同时将分子量减少100 kDa,而不是初始的内膜α-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-乙酰乙酰基质抗乳酸化酶。在11种测试设计中,有6个表示为可溶性单体,与天然酶相比显示出相似或增加的恒温性。尽管缺乏可检测到的酶促活性,但代表性设计的实验确定的晶体结构以1.0Å的根平方偏差密切匹配设计,其催化性最重要的侧链在2.0Å之内。结果突出了脚手架幻觉在设计蛋白质中的潜力,该蛋白可能是后续酶工程的基础。关键字:从头设计,酶设计,糖苷水解酶,深网幻觉■简介
用等电子 BN 单元替换 CC 会产生极其相似的分子,但 BN 同类物通常具有不同的性质。1 由于这种现象,将 BN 掺入有机材料中已受到广泛关注,2 目前已成为一种修改物理和光电性质的成熟方法。3 该方法已应用于螺旋烯,发现将 BN 掺入[4]螺旋烯(例如 A 和 B,图 1)的螺旋骨架内可提高其相对于全碳[4]螺旋烯的荧光效率。 4 然而,将 BN 单元纳入更高阶[ n ]螺旋烯( n = [5],对构型稳定性必不可少)的螺旋骨架的研究还不够深入,据我们所知,迄今为止尚未报道过更高阶螺旋烯、[5] 和 [6] 螺旋烯( C 和 D )的简单 BN 类似物(迄今为止发表的所有例子都是 p 扩展 BN – 螺旋烯,例如 E )。5