2012 年修订的《粮农组织世界农业报告》预测,如果世界采用农业集约化,即增加作物产量和提高种植强度,全球粮食产量可能会增加 90%,并且“只要研究/投资/政策要求和可持续集约化目标继续成为优先事项,世界农业就不会面临生产未来人口所需粮食的重大制约因素”(Alexandratos 和 Bruinsma 2012,20)。这些预测无疑使可持续农业集约化 (SI) 成为解决全球粮食和气候变化问题的“组织原则”(粮农组织 2009a)。此外,虽然农业集约化理念无疑已成为主流,并在推动第二次绿色革命的浪潮中根深蒂固(Fairbairn 等人,2014 年;Snyder 和 Cullen,2014 年;Tittonell,2014 年;Vanlauwe 等人,2014 年;Mdee 等人,2019 年),但这可能意味着仅关注提高产量的技术干预,与“可持续性”的规范目标之间的关系不明确且存在争议。
棉花农艺学,生理和土壤会议为讨论棉花植物的生命过程以及影响作物性能和盈利能力的植物和土壤变量之间的相互作用提供了论坛。演讲和海报将重点关注从分子生物学到应用农艺研究的主题。这包括最近且正在进行的研究,该研究涉及与棉花生产的各个方面有关的广泛主题,包括但不限于轮换,植物营养,肥料配方,肥料施用速度和技术,对废物(肥料和生物植物)的有益利用(肥料和生物植物),耕作方法,耕作方法,灌溉技术,遥感技术,遥感和精致农业。提出的研究将包括旨在更好地了解这些生命过程的基础研究,以研究操纵植物的棉花生理学的遗传,化学,生物学和物理手段,以提高产量和改善的纤维质量。与棉花生长,生产和管理的生理方面有关的应用研究也是该计划的一部分。
许多实验和计算工作试图了解DNA折叠的折叠,但是此过程的时间和长度尺寸构成了显着的挑战。在这里,我们提出了一种使用可切换力场的介观模型来捕获单链和双链DNA基序的行为以及它们之间的过渡,从而使我们能够模拟DNA折纸的折叠,最多可达几个千千目标。对小结构的布朗动力学模拟揭示了一个层次折叠过程,涉及将其拉入的折叠前体,然后结晶成最终结构。我们阐明了各种设计选择对折叠顺序和动力学的影响。较大的结构显示出异质的主食掺入动力学,并且在亚稳态状态中频繁捕获,而不是表现出第一阶动力学和实际上无缺陷的折叠的更容易接近的结构。该模型开辟了一条途径,以更好地理解和设计DNA纳米结构,以提高产量和折叠性能。
采用工业 4.0 不仅仅是个人喜好问题,对于希望在当今竞争激烈的全球市场中取得成功的企业而言,这是一种战略需求。随着技术的快速发展,想要保持稳健和相关性的企业必须采用工业 4.0。提高产量、优化成本和提高运营效率只是这一模式转变的部分优势。通过使用自动化、人工智能和物联网等智能技术,企业可以最大限度地减少停机时间、优化工作流程并根据数据做出明智的决策。此外,工业 4.0 使创建灵活敏捷的生产流程变得更加容易,从而使企业能够快速适应不断变化的消费者口味和市场需求。投资于这一革命性战略的企业不仅可以确保其业务面向未来,还可以开辟创新、客户参与和可持续增长的新途径。拥抱工业 4.0 不仅仅是一种需求,对于渴望在现代工业时代不断发展的格局中蓬勃发展的组织而言,这是一种战略要务。
在过去的一年里,全球仍受 COVID-19 疫情的困扰,半导体技术使我们能够远程工作、学习、治疗疾病、在线订购商品并保持联系。随着世界大部分地区停摆,半导体使全球经济、医疗保健和社会的齿轮继续转动。而且,至关重要的是,半导体帮助医生和科学家开发治疗方法和疫苗,开始让世界恢复健康。例如,如果没有为世界上最先进的超级计算机提供动力的半导体,历史性的 COVID-19 疫苗快速开发就不可能实现。虽然半导体行业在 2021 年取得了巨大成功,但也面临着重大挑战。其中最主要的是全球半导体普遍短缺。疫情应对期间对半导体的需求意外上升,再加上汽车等其他产品的芯片需求大幅波动,引发了全球范围内的供需失衡。半导体行业一直在努力提高产量以满足高需求,到 2021 年中期,每月出货的半导体数量比以往任何时候都多,但大多数行业分析师预计短缺将持续到 2022 年。
摘要 - 特征大小的减小和制造过程的增长会导致制造半导体设备的更多故障。因此,识别失败的根本原因布局模式变得越来越多地提高产量。在本文中,提出了一个基于布局感知诊断的新型布局模式分析框架,以有效地确定根本原因。在框架的第一个阶段,使用对比度学习训练的编码网络用于提取布局片段的表示形式,这些片段不变到琐碎的变换,包括偏移,旋转,旋转和镜像,然后将其聚类以形成布局模式。在第二阶段,我们通过结构性因果模型对任何潜在的根本原因布局模式与系统缺陷之间的因果关系进行建模,然后将其用于估计候选候选候选缺陷模式的平均因果效应(ACE),以识别真正的根本原因。对实际工业案例的实验结果表明,我们的框架的表现要优于具有更高准确性的商业工具,并且平均速度约为8.4加速。
全球基因银行具有表型和遗传新颖性,可用于提高产量,作物适应性和农生动态性(Tanksley and McCouch,1997),同时缓冲作物遗传侵蚀(Khoury等,2021年)。然而,必须授权基因银行利用的新策略,以满足日益增长的全球粮食需求(McCouch,2013; Bohra等,2021),其作物替代方案具有适合气候变化的替代品,对环境和生物多样性的可持续性,以及社区的生物多样性(Scherer等人,2020年)。因此,为了在Genebank采矿中填补这一差距,该研究主题通过利用高通量表型和作物野生亲戚(CWR)和Landraces的基因分型来汇总了能够加快作物改进过程的最新发展(Singh等,2022)。如下一部分所讨论的那样,累积的作品创新了基因班克表征,利用和等位基因部署的不同步骤,包括种质鉴定,保护,保护,繁殖前筛查基因上多样性和相关标记物以及侵入性育种。
2025 年 2 月 10 日至 19 日,在纳格浦尔的 ICAR-CICR 举行。这是一项关键举措,旨在为研究人员、推广人员和现场专业人员提供先进的知识和实践技能,以应对棉花害虫日益严重的杀虫剂抗药性问题。害虫抗药性的产生对主要经济作物棉花构成了严重问题,危及可持续性和生产力。棉花害虫杀虫剂抗药性概述、杀虫剂和毒素抗性的遗传学和机制以及昆虫病原真菌和线虫在抗药性管理中的作用只是本课程将涵盖的几个重要主题。参与者还将获得建立杀虫剂和毒素生物测定、植物生物测定、生化和分子技术的实践经验,并探索用于杀虫剂应用的无人机技术等创新工具。该计划通过采用多学科方法,旨在提高参与者在棉花种植中实施抗性管理的能力,从而有助于提高产量、环境健康和长期农业恢复力。
谷物重量是决定米饭和其他谷物作物单植物产量产生的主要因素之一。研究已开始揭示晶粒重量和晶粒尺寸的调节机制,突出了这项研究对植物分子生物学的重要性。晶粒重量的发育特征受到多个分子和遗传方面的影响,这些方面导致细胞分裂,扩张和分化的动态变化。此外,几种重要的生物学途径有助于晶粒重量,例如泛素化,植物激素,G蛋白,光合作用,表观遗传修饰和microRNA。我们的评论综合了早期和最新的发现,并为对谷物重量的更全面了解如何优化提高产量产量的策略提供了未来的观点。令人惊讶的是,获得的知识并未揭示出对基本分子机制的更多见解。加速大米和其他谷物的分子育种正在成为农艺学家的一项紧急和至关重要的任务。最后,我们强调了利用基因编辑技术以及为未来水稻育种应用的结构研究的重要性。
精确的蔬菜养殖代表了一种尖端的农业管理方法,利用先进的技术来优化作物生产,同时最大程度地降低环境影响。本摘要探讨了精确耕作技术在蔬菜种植中的潜力,重点是它们在增强可持续性和提高产量中的作用。通过整合传感器,GPS技术和数据分析,农民可以在微观尺度上做出有关灌溉,施肥和害虫控制的明智决定。这种目标方法不仅减少了资源浪费,还可以改善作物质量和数量。摘要讨论了精确蔬菜农业中采用的关键技术,包括遥感,可变速率技术和自动化系统。它还研究了经济和环境益处,例如化学使用降低,提高水效率和提高的获利能力。尽管承认实施和采用方面的挑战,但摘要得出的结论是,在气候变化和资源稀缺的时代,精密蔬菜农业为更可持续和生产的农业实践提供了有希望的途径。