金融危机强调了金融关系的一部分是全球宏观经济变异性和系统性风险的潜在来源。使用深度学习(DL)预测金融危机(dl),利用神经网络(NN)来确定指示未来金融危机的模式并分析复杂的财务数据。dl方法,例如经常性神经网络(RNN)或长期记忆(LSTM),这些方法可以处理大量过去的财务数据,例如地缘政治事件,经济指标和市场价格。这些模型的目的是确定可以通过从早期危机及其前体学习来导致经济衰退的精致联系和信号。该问题属于金融市场的复杂和动态性质,要求持续培训和修改方法,以在发展财务状况方面保持显着性。尽管DL显示了提高预测能力的潜力,但要接受金融市场的固有歧义以及建立模型以提高其准确性和可靠性的要求至关重要。本研究提出了一种基于水母搜索算法的特征选择,其中最佳深度学习算法(JSAFS-ODL)用于金融危机预测(FCP)。JSAFS-ODL技术的目标被归类为金融危机或非财务危机的存在。为此,JSAFS-ODL技术应用基于JSA的功能选择(JSA-FS)来选择最佳功能集。此外,RNN-GRU模型可用于FCP。为了增强RNN-GRU方法的检测结果,可以将黑猩猩优化算法(COA)用于与RNN-GRU模型相关的超参数的最佳调整。为了确保JSAFS-ODL程序的更好性能,涉及一系列测试。获得的值强调了JSAFS-ODL技术达到JSAFS-ODL技术的显着性能。
马喆 西安工业大学 计算机科学与工程学院 陕西 西安 710021 e-mail: 1429462700@qq.com 摘要:随着航空运输的快速增长,资金越来越紧缺,航班不正常情况也越来越严重,不正常航班已经成为社会普遍现象,也是航空公司面临的一大难题。航班恢复是一个经典的NP问题,研究航班恢复问题具有重要的理论意义和实用价值。航空公司航班时刻的准时性是留住现有客户、吸引新旅客的关键因素。然而由于民航运输系统非常复杂,很多原因都会造成航班计划不能正常执行,天气、空中交通流量管制、机场安检、旅客自身原因以及机组人员暂时短缺等都会导致航班不能正常执行,即出现航班异常或航班中断。航班中断会影响航空公司的正常运行。一些航班不得不取消或延误,这将给航空公司带来巨大的经济损失,此外航班延误或取消会给旅客带来极大的不便,影响航空公司的声誉。不正常航班的运行控制和管理水平越来越受到国内航空公司的关注。优化控制和算法设计也成为热点
摘要互连的多微晶(MMG)的概念是一种有前途的解决方案,用于改善分销网络的操作,控制和经济性能。MMGS的能源管理是一项艰巨而又具有挑战性的任务,尤其是由于这些资源间歇性以及负载需求的随机性质而导致的可再生能源资源(RER)和负载变化的变化。在这方面,通过最佳包含由光伏(PV)和风力涡轮机(WT)的分布式发电(DGS)组成的混合系统,优化了MMGS的能源管理,并在产生的功率和负载变化的情况下进行了基于风力涡轮机(WT)的分布式生成(DGS)。提出了一种修改的卷cuchin搜索算法(MCAPSA),并应用于MMG的能量管理。MCAPSA基于增强标准胶囊搜索算法(CAPSA)的搜索能力,使用三种改进策略,包括基于准序列的学习(QOBL),基于运动的随机征费,征收征费分布以及Prairie Dog dog Optimization(PDO)中的Prairie Dogs的利用机制。优化的功能是一个多目标函数,包括成本和降低电压偏差以及稳定性增强。对标准基准函数和获得的结果验证了所提出的技术的有效性。然后,所提出的方法用于在不确定性锥形时进行IEEE 33-BUS和69个总线MMG的能源管理。同样,对于第二个MMG,VD的成本和总和减少了44.19%和39.70%,而VSI的增强率则增长了4.49%。结果表明,使用拟议技术包含WT和PV的能源管理可以将VD的成本和总和减少46.41%和62.54%,并且第一个MMG的VSI将增强15.1406%。
N ),并在 [Ben+97] 中被证明是渐近最优的。近年来,一种新的混合量子-经典 (HQC) 计算概念被提出[Llo00]并受到越来越多的关注,HQC 的概念被应用于计算机科学的多个领域[End+21; Ott+17; Liu+21; Ber+18]。通过将量子组件附加到经典计算机,两个部分相互补充,使得 HQC 兼具两者的优点,例如量子并行性[NC10]、数据存储和高效的算术运算。尽管一些文章讨论了 HQC 的详细结构,但在本文中,我们用第 2 部分来研究 HQC 的配置。此外,我们面临着将 Grover 算法应用于多解搜索问题时的低效率问题(这将遇到重复并恶化到 O ( N √
摘要:路径计划是机器人技术领域的重要研究方向;但是,随着现代科学和技术的发展,对机器人研究领域的有效,稳定和安全的路径规划技术的研究已成为现实的需求。本文介绍了一种改进的麻雀搜索算法(ISSA),并采用了融合策略,以进一步提高解决挑战性任务的能力。首先,用圆形混沌映射初始化了麻雀种群,以增强多样性。第二,在探索阶段使用了北陀螺仪的位置更新公式,以替换安全情况下的Sparrow Search Algorithm的位置更新公式。这改善了发现者模型在解决方案空间中的搜索广度,并优化了解决问题的效率。第三,该算法采用了Lévy飞行策略来提高全球优化能力,因此在迭代的后期,麻雀会跳出本地最佳。最后,自适应T分布突变策略在后期迭代中增强了局部勘探能力,从而提高了麻雀搜索算法的收敛速度。将其应用于CEC2021函数集,并将其与其他标准智能优化算法进行比较以测试其性能。此外,ISSA是在移动机器人的路径规划问题中实施的。比较研究表明,就路径长度,运行时间,路径最佳性和稳定性而言,所提出的算法优于SSA。结果表明,在移动机器人路径计划中,所提出的方法更有效,健壮和可行。
遗传学在恶性肿瘤的发展和进展中起着重要作用。相关基因的识别是一个高维数据处理问题。为了解决维数灾难,提出了一种混合方法,即金字塔引力搜索算法 (PGSA),其中基因数量循环减少。PGSA 由两个元素组成,一个过滤器和一个包装器方法(受引力搜索算法启发),该方法通过循环进行迭代。在每个循环中选定的基因会传递到后续循环以进一步降低维数。PGSA 尝试使用信息量最大的基因来最大化分类准确度,同时减少基因数量。结果报告了针对乳腺癌的多类微阵列基因表达数据集。已经实施了几种特征选择算法以进行公平的比较。PGSA 在准确度方面排名第一(84.5%),有 73 个基因。为了检查所选基因是否对患者的生存和治疗反应有意义,对这些基因进行了蛋白质-蛋白质相互作用网络分析。在检查遗传网络时出现了一个有趣的模式。HSP90AA1、PTK2 和 SRC 基因位列排名最高的瓶颈基因之列,DNA 损伤、细胞粘附和迁移途径在网络中高度丰富。
Spencer K. Millican,联合主席,电气和计算机工程助理教授 Vishwani D. Agrawal,联合主席,电气和计算机工程名誉教授 Adit D. Singh,Godbold 主席,电气和计算机工程教授 Victor P. Nelson,电气和计算机工程名誉教授 Sanjeev Baskiyar,计算机科学和软件工程教授