应答器声纳浮标导弹撞击定位系统 (DOT I SMILS),利用由任务支援飞机投放的几种类型的声纳浮标。典型的声纳浮标直径为 4.5 英寸,长度不到 36 英寸。当浮标从飞机上自由落体时,一个小型阻力降落伞会展开,并稳定浮标坠入水中。撞击时,降落伞会释放,天线会竖起。在某些浮标中,天线位于小气球(浮子)组件中,该组件由声纳浮标中压力瓶中的气体充气。气球为浮标提供额外的浮力,并保护天线免受盐雾侵害。在气球充气的同时,浮标会释放一个水听器组件,该组件下降到大约 30 英尺的深度。水听器拾取其他浮标产生的声学信号和每次再入飞行器撞击的声音,并通过甚高频无线电链路将该信息传输到上空盘旋的任务支援飞机。阵列中的某些浮标部署了第二个水听器,将声学应答器命令信号注入水中。图 1 所示的导弹撞击定位系统中使用了各种类型的浮标。测速浮标测量水中的声速,而深海温度计浮标测量温度
瞬间,您的汽车从开车到在您面前的汽车或其他东西。汽车突然减慢,在撞击点,汽车的结构将弯曲或破裂。弯曲动作可吸收一些初始碰撞力,从而保护乘客舱。
地面传感器检测到事件后,会将信息发送到指挥中心,通常是时间戳、声音分类以及源的方位和海拔。大部分处理工作在每个地面传感器上单独完成,因此只有非常小的文本数据包需要传输到指挥中心。然后对来自多个传感器的数据进行整理和集中处理,计算出的位置以表格形式和图形格式呈现,例如在该区域的地图或卫星图像上。撞击点 (POI) 和原点 (POO) 以网格坐标表示。所有信息都可以导出或打印成硬拷贝,以便进一步报告和汇报。使用指挥中心软件,可以远程访问地面传感器,从而实现简单方便的配置。
通过进行一系列轨迹模拟来评估这一点,模拟中火箭的推力在飞行的各个点处被切断,以确定一系列可能的撞击点。然后通过考虑撞击区的人口密度来确定总体生命风险。这类分析是作为与上面提到的 HFD 分析相同的研究的一部分进行的,结果以图表形式呈现在报告 [1] 中。虽然这项研究考虑了运载火箭从不同位置起飞,但火箭的发射点与维珍轨道使用的地点非常相似(即爱尔兰西南部的靶场)。分析显示,发射器的飞行路径将经过马德拉群岛和加那利群岛附近,如果第二级发动机过早关闭等,则有很大风险撞击这些岛屿。
假设飞行员俯冲投掷弹药,并让飞机在垂直于地面(无滚转)的平面上飞行(图 1a 和 1b)。P 边和 R 边之间的夹角是飞行路径角或俯冲角 e。如果飞机以恒定的“G”载荷飞行,其飞行路径等于 e 的余弦,即从滚转到撞击地面。应该认识到,除了“飞行时间零的射弹”或瞄准线在 P 边上方的弹药之外,飞机撞击点无论风向如何都在目标之外。这是由于重力、空气阻力或射弹阻力以及提供分离的弹射力。这些变量确定或定义了固定的炸弹射程,这是“破折号 34”表格中显示的所有弹道数据的基础。作为战斗机飞行员,我们对飞行路径数据下方的俯仰角至关重要。这些数据实际上只不过是由炸弹射程、释放高度定义的三角形的角度解。和俯冲角度。用投掷器瞄准释放点。在 P 侧下方某处。除了理论上如上所述。并且所有参数都满足。人们应该理所当然地期待一个靶心。让我们假设攻角。~。已经解决了
B-2A 是 GBU-38 的入门平台,即它是美国武装部队中第一架配备这种新武器的飞机。因此,由于 B-2A 能够携带大量 500 磅级弹药,武器的设计和集成有了新的突破。B-2 在两个并排的武器舱中携带 80 枚 GBU-38 弹药,每个武器舱有 40 枚武器。每个武器舱内都有前后弹架,每个弹架有 20 枚弹药。与所有武器系统一样,从 HF 的角度来看,添加新东西的挑战是将新设计集成到现有显示器中,并符合特定设计的软件接口控制文档 (ICD)。本论文主要关注三个领域。1) 人机界面和及时控制大量制导武器; 2) 在有限的空间内显示大量信息(这一直是航空和驾驶舱设计的挑战); 3) 从 HF 角度考虑任务使用。
B-2A 是 GBU-38 的门槛平台,也就是说,它是美国武装部队中第一架配备这种新武器的飞机。因此,由于 B-2A 能够携带大量 500 磅级弹药,武器的设计和集成有了新的突破。B-2 在两个并排的武器舱中携带 80 枚 GBU-38 弹药,每个武器舱有 40 枚武器。每个武器舱内都有前后弹药架,各有 20 枚弹药。与所有武器系统一样,从 HF 的角度来看,添加新功能的挑战在于将新设计集成到现有显示器中,并符合特定设计的软件接口控制文档 (ICD)。本论文主要关注三个领域。1) 人机界面和及时控制大量制导武器;2) 在有限的空间内显示大量信息(这一直是航空和驾驶舱设计的挑战); 3)从HF角度考虑任务就业问题。
图片列表 图 1:坠机地点地理参考 图 2:最终撞击点 图 3:坠机前 13 分钟的天气 图 4:坠机前 8 分钟的天气 图 5:坠机前 6 分钟的天气 图 6:坠机前 5 分钟的天气 图 7:坠机前 4 分钟的天气 图 8:坠机前 3 分钟的天气 图 9:坠机前 2 分钟的天气 图 10:坠机前 1 分钟的天气 图 11:坠机时的天气 图 12:坠机后 1 分钟的天气 图 13:分离的树木图片 图 14:残骸照片 图 15:第 5 次飞行(坠毁飞行)最后 3 分钟数据:间隔 15 秒 图 16:第 4 次飞往卢克拉的飞行最后 3 分钟数据:间隔 15 秒 图 17:第 3 次飞往卢克拉的飞行最后 3 分钟数据:间隔 15 秒 图 18:第 4 次飞往卢克拉的飞行最后 3 分钟数据2017 年 5 月 27 日 9N-AKY 最后三次连续飞行 图 19:2017 年 5 月 27 日 9N-AKY 最后三次连续飞行的高度剖面图比较 图 20:2017 年 5 月 27 日 9N-AKY 最后三次连续飞行的指示空速 (IAS) 比较 图 21:功率曲线 图 22:右侧轨迹是命运多舛的 GOMA AIR 飞机 9N-AKY 的轨迹 图 23:Goma Air 409 的最终飞行路径以及同步的关键 CVR 记录的时间戳
飞行员通常认为,在航空母舰上着陆是最困难的训练之一,因为能见度条件、航空母舰动力学和狭小的着陆区使着陆变得复杂。根据能见度条件,可以使用几种接近航空母舰的方法,如 [1] 中所述。在我们的案例中,研究的轨迹包括在距离航空母舰 7.5 公里处开始下降,并将钩子放在所需的下降滑行上。为了确保着陆精度,不进行拉平。方法可以总结为保持下降率和迎角恒定,以保持飞机稳定性并防止失速。航空母舰上的着陆控制并不是一个新问题。它使用经典传感器(如雷达或相对 GPS [2])进行研究,这些传感器确定相对于参考轨迹的误差,并使用控制律对其进行校正,该控制律可以是最优的 [3] 或鲁棒的 [4]。[3] 中实现了一些航空母舰动力学预测模型,以改进控制。几十年来,出于认知和安全方面的考虑,人们一直在研究飞行员着陆时使用的视觉特征。目的是了解飞行员使用的特征并确定他们的敏感性[5],以便模拟人类反应并改善飞行员训练。[6] 介绍了用于在对准、进近和着陆期间控制飞机的视觉特征的相当完整的最新技术水平。例如,消失点和撞击点之间的距离允许飞行员跟随下降滑行。在[7]和[8]中,考虑到小角度假设,建立了相对姿势和视觉特征之间的联系。航母着陆主要在辅助系统范围内研究,该辅助系统处理光学着陆系统的可见性。海军飞行员降落在航母上的方法之一是控制飞机,以便将平视显示器 (HUD) 上的下滑道矢量聚焦到甲板上的三角形标记上,如图 1a 所示。另一种方法是将飞机的下滑道矢量与甲板上的三角形标记对齐,如图 1a 所示。