在技术文献中可以找到大量关于 ACAES 的理论和模拟研究的例子,预测的往返通常在 50 — 75 % 的范围内,即 8,2 。在这些研究中,系统的各个子组件(即压缩机、热交换器、涡轮机)通常基于“黑箱”热力学模型,从给定数量的输入生成性能指标,而不考虑内部组件的细节。虽然这种方法对于概念研究和描述一般操作原理很有用,但它忽略了重要的设备技术限制和/或设计挑战。这可能导致对操作条件和性能指标的预测不切实际。也有论文指定了动态组件性能 9 ,但这些论文仍然基于通用模型,而不是特定的定制设计组件。在最近的一篇论文 1 中,我们推导出等容 ACAES 系统的理想性能极限,提供
对自动驾驶汽车(AV)的研究取得了显着的进步,而深度学习的最新进展(DL),尤其是在车辆感知堆栈上。尽管有一些令人鼓舞的结果和演示,但DL在车辆计划和控制堆栈中的应用仍然有限。深度强化学习(DRL)是一种在序列过程中生成控制策略的方法,并且能够自动从数据学习和适应数据,从而强大地应对不同的操作条件和任务。与传统的基于模型的控制方法相比,这提供了更高的性能计划或控制解决方案,该方法依赖于系统的数学模型。最近通过示例的DRL分解包括Alphastar(Arulkumaran等,2019),该模型旨在播放Starcraft II和端到端的自动驾驶汽车延续(Kendall等,2019)。
摘要。发生人为因素分析模型是根据人为因素分析和分类系统(HFAC)以及中国民航的实际操作条件和特征来开发中国民航模型,以增强安全信息的分类,分析和利用。此外,要生成一个可以在航空事件分析中提供定量分析支持的模型,建立了基于OHFAM和贝叶斯网络的人为因素分析模型。通过用CH得分功能梳理爬山搜索方法构建的模型是一个贝叶斯网络,它使用三层节点来表示人为因素和事件之间的因果关系。人为因素对航空事件的特定影响程度由模型的条件概率参数表示。它在航空事件分析和推论中很有用。
氮生产单元是炼油厂中最重要的单位之一,根据需求和现有条件,其功能不同。在本研究中,目的是通过更改Hysys软件(V14-2024)的操作条件来优化氮生产单元中的能源消耗。本文的优点和新颖性是因为饲料的数量和纯度没有改变,并且由于炼油厂单位的能源消耗的重要性,因此在单位过程中观察到了大量能源减少。要确定软件中的目标函数,设备的能量量,包括冷却器,进料压缩机,冷凝器和重新启动器。之后,所有这些值在一个单元格中添加在一起以确定目标函数。模拟结果表明,与初始值相比,能源消耗优化了17.4%。
以催化发展为例。一个多世纪以来,研究人员主要依靠爱迪生式的反复试验方法或经验证据来设计催化剂和反应系统,但这些工作非常耗时,而且结果也参差不齐。许多因素都会影响催化剂的性能,包括操作条件、催化剂的元素组成(金属、载体和杂质)、催化剂的形态(相、孔隙率、表面积、电导率等)以及反应器配置和操作。由于变量组合数量庞大,研究人员通过传统的反复试验方法取得重大进展非常困难且耗时。利用最先进的人工智能技术对于可持续化学和催化研究人员挖掘、组织和利用与反应创新相关的大量数据源(例如温度、压力、溶剂、金属、载体、分子组成和反应器配置)至关重要。
简介 以下一般信息将有助于机器设计师或轴承用户在使用本目录涵盖的 CAMROL ® 、CAGEROL ® 、GUIDEROL ® 和 SPHERE- ROL ® 轴承时提供帮助。在每个相应部分中都可以找到仅涉及每种轴承类型的附加数据。必要时进行交叉引用。在选择合适的设计和尺寸的轴承时,应仔细考虑工程数据。对于存在不寻常或异常操作条件的应用,建议咨询麦吉尔工程部门以获取建议。需要特别考虑的条件包括高温或低温、错位、轴和轴承座配合(可能导致轴承在安装后内部配合过紧)、振动、潮湿、污染等。核应用
夜间,在没有人造照明的平淡地形上飞行,和/或有云或雾,对目视飞行规则 (VFR) 直升机紧急医疗服务 (HEMS) 任务来说,是一种危险的操作条件 (HOC)。1 据报道,天气是 HEMS 飞行员遇到的最大危险。23 每次飞行前,HEMS 飞行员都必须检查天气数据,并最终根据评估结果做出拒绝、接受、继续或推迟任务的最终决定。1 该决定是一项关键的预防性风险控制,可避免遇到非视觉气象条件 (non-VMC),因此飞行员可以保持 VFR 所要求的视觉空间定位。1,11 在能见度降低的 VFR 下夜间飞行,看不到视觉提示或地平线,是空间定向障碍的理想条件。17
– 所有规格均指 80 gsm 质量的 A4 尺寸纸张。– 所列规格和功能的支持和可用性取决于操作系统、应用程序和网络协议以及网络和系统配置。– 每种耗材的预期寿命基于特定操作条件,例如特定页面尺寸的页面覆盖率(A4 的 5% 覆盖率)。– 每种耗材的实际寿命将根据使用情况和其他打印变量而有所不同,包括页面覆盖率、页面大小、介质类型、连续或间歇打印、环境温度和湿度。– 部分产品插图包含可选配件。– 规格和配件基于打印时可用的信息,如有更改,恕不另行通知。– 柯尼卡美能达不保证所提及的任何价格或规格没有错误。– 所有品牌和产品名称可能是其各自所有者的注册商标或商标,特此声明。
先进反应堆概述先进反应堆设计通常在燃料形式、冷却剂或部署模型方面具有与现有轻水反应堆不同的属性。这包括水冷小型模块化反应堆 (SMR)、非水冷反应堆(如高温气冷反应堆或熔盐反应堆)和各种微反应堆概念。这些技术在安全性、经济性、性能和长期能源安全方面可能比当前的发电技术有实质性的改进。随着全球深度脱碳努力的持续发展,人们对先进反应堆作为一种无碳、可靠、经济且固有安全的发电和供热来源的兴趣日益浓厚。这些特性源于温度和环境的差异,这需要替代材料适应更高甚至更严酷的操作条件。
开发先进的下一代 LA 电解器以克服上述限制的关键研发机会包括:开发新材料、改进组件界面以及设计新型电池和堆栈。需要进行更多基础诊断研究,以将性能与材料和界面特性关联起来并了解降解机制。此类研究将为新型电池和堆栈组件的材料开发工作提供参考。隔膜和催化剂尤其被强调为历史上未得到充分开发的材料,具有巨大的进步机会。材料的表征和测试应在相关操作条件下使用标准化协议进行,包括下一代 LA 系统预期的操作条件(例如间歇操作、