人工微结构使我们能够通过改变微结构的几何参数和排布来控制和改变波场的性质,在过去的几十年里引起了广泛的关注。基于人工微结构的一些研究领域,如超材料、超表面和声子拓扑绝缘体,已经出现了许多新颖的应用和现象。特别地,利用超表面可以在亚波长尺度上轻松实现对波场不同维度(相位、振幅、频率或偏振)的操控。在本文中,我们重点介绍了基于人工微结构的波场操控的最新发展,并从波场操控的不同维度的角度对一些重要的应用进行了分类。波场操控从一维到多维的发展趋势为研究人员实现微型化和集成化的光学和声学器件提供了有用的指导。
光学显微镜是生物学中最强大的工具之一。能够在广泛的尺度上可视化生命结构和事件的能力导致了基础发现。同时,为了更有效地研究活体组织,需要克服一些限制。例如,在传统显微镜中,样品要么在整个成像场上同时被照亮(宽视野照明),要么逐个像素依次被照亮(点扫描照明)。宽视野方法可以高速成像,因为它使用相机一次捕获二维图像,但它会受到光散射产生的像素串扰的影响。在点扫描方法中,单个像素检测器捕获荧光信号并逐个像素构建图像;当使用双光子激发时,它会大大减少光散射的串扰。但是,虽然双光子显微镜适合对散射组织深处进行成像,但作为一种点扫描方法,其成像速度较慢。