• 安全性和保密性 – 加密服务引擎 (CSEc) 实现了 SHE(安全硬件扩展)功能规范中所述的一套全面的加密功能。注意:CSEc(安全)或 EEPROM 写入/擦除将在 HSRUN 模式(112 MHz)下触发错误标志,因为此用例不允许同时执行。设备需要切换到 RUN 模式(80 MHz)才能执行 CSEc(安全)或 EEPROM 写入/擦除。 – 128 位唯一标识 (ID) 号 – 闪存和 SRAM 存储器上的纠错码 (ECC) – 系统内存保护单元(系统 MPU) – 循环冗余校验 (CRC) 模块 – 内部看门狗 (WDOG) – 外部看门狗监视器 (EWM) 模块
在错误校正后的逻辑Qubits上执行量子算法是可扩展量子计算的关键步骤,但是对于当前的实验硬件,Qubits和物理错误率的必要数量和物理错误率要求。最近,针对特定物理噪声模型量身定制的错误纠正代码的开发有助于放松这些要求。在这项工作中,我们为171 yb中性原子量子A的量子编码和栅极协议提出了将主要物理误差转换为擦除,即已知位置的错误。关键思想是在亚稳态的电子水平上编码Qubits,以便门错误主要导致向不相交子空间的过渡,这些子空间可以通过荧光连续监测其种群。我们认为,98%的错误可以转换为擦除。我们通过表面代码的电路级模拟量化了这种方法的好处,从而发现阈值从0.937%增加到4.15%。我们还观察到阈值附近的较大代码距离,从而使相同数量的物理量子位的逻辑错误率更快降低,这对于近期实现非常重要。擦除转换应有益于任何错误纠正代码,并且还可以应用于在其他Qubit平台中设计新的门和编码。
不幸的是,闪存存储具有明显的物理限制。擦除块中的闪存单元只能在块完全删除后重写。闪光单元在每个写入和校准周期中都磨损,最终失去了可靠存储数据的能力,从而限制了细胞耐力。在传统的SSD中,闪存单元格及其特点隐藏在传统块界面后面。该接口是通过SSD上的复杂固件(Flash Translation Layer(FTL)(§2)实现的。块间面暴露于主机一个平坦的地址空间,可以在页面粒度(通常为4 kb)上写下,类似于HDD。该接口对应用程序开发人员熟悉,并得到主要操作系统的支持。但是,由于闪光灯细胞不能被覆盖,必须在擦除块粒度(通常几个兆字节)上擦除,随机写入迫使FTL实现垃圾收集以从对数字地址空间中被覆盖的旧数据中收回空间。垃圾收集在擦除擦除块之前将有效数据转发为过度配置(备用)闪存空间。这会导致写入,其中一旦在闪光灯上进行了多次写入逻辑地址空间的字节。通过使用多余的写入和射击循环来写扩增寿命。将数据放在一起将在同一时间左右无效的数据是避免写入放大的关键。重大的研究工作已朝着管理常规SSD块接口的不良影响方面。不幸的是,FTL无法访问此类数据放置所需的应用程序级信息,并且应用程序对FTL如何在设备上安排数据的控制有限。这在管理垃圾收集和其他FTL任务引起的绩效降低和不可预测性方面进行了很多工作[19,29,55,56]。先前的工作具有反向工程的FTL,以找到与FTL内部操作最有效的访问模式[20,62]。系统也经常会闪光灯写作以延长其闪光设备的寿命,因为它们的工作负载会导致高写放大[6,16,25]。本文认为,系统社区应停止今天研究常规SSD。我们的努力应该转移到分区名称空间(ZNS)SSD [52]。Zns是一个新的SSD接口,在
信息是物理的,但是在有限的时间内也可以处理信息。在涉及计算协议的情况下,量子制度中的有限时间处理可以动态产生连贯性。在这里我们表明这可以具有重要的热力学意义。我们证明,在经历有限的时间信息擦除协议的系统的能量本质上产生的量子相干性产生了极端耗散的罕见事件。这些波动纯粹是量子的起源。通过研究缓慢驱动极限的耗散热量的全部统计数据,我们证明了连贯性为所有统计累积物提供了非负贡献。使用单个位擦除的简单和范式示例,我们表明这些极端的耗散事件在实验上可区分的特征产生独特的典范。
量子能力,作为给定量子通道的关键功能的关键数字,上限是Channel传输量子信息的能力。识别不同类型的通道,评估相应的量子能力并找到能力吸引的编码方案是量子通信理论的主要任务。量子通道,而由于有限的维度问题,连续变量通道中的错误模型的研究较少。在本文中,我们研究了一般连续的可变量子擦除通道。通过定义连续变量系统的有效子空间,我们找到了连续的可变随机编码模型。然后,我们在解耦理论框架中得出连续可变通道的量子能力。本文中的讨论在连续变量设置中填补了量子擦除通道的间隙,并阐明了对其他类型的连续变量量子通道的理解。
该设备是一个 64 兆位(8,192K 字节)串行闪存,具有先进的写保护机制。该设备通过标准串行外设接口 (SPI) 引脚支持单比特和四比特串行输入和输出命令:串行时钟、芯片选择、串行 DQ 0 (DI) 和 DQ 1 (DO)、DQ 2 (WP#) 和 DQ 3 (HOLD#/RESET#)。支持高达 133MHz 的 SPI 时钟频率,在使用四路输出读取指令时,允许四路输出的等效时钟速率为 532MHz(133MHz x 4)。使用页面编程指令,可以一次对内存进行 1 到 256 个字节的编程。该设备还提供了一种复杂的方法来保护单个块免受错误或恶意编程和擦除操作的影响。通过提供单独保护和取消保护块的能力,系统可以取消保护特定块以修改其内容,同时确保内存阵列的其余块得到安全保护。这在以子程序或模块为基础修补或更新程序代码的应用中非常有用,或者在需要修改数据存储段而又不冒程序代码段被错误修改的风险的应用中非常有用。该设备设计为允许一次执行单个扇区/块或全芯片擦除操作。该设备可以配置为以软件保护模式保护部分内存。该设备可以对每个扇区或块维持至少 100K 次编程/擦除周期。
“超顺磁效应”是指承载数据的粒子非常小,室温下所有材料中存在的随机原子级振动会导致数据位自发翻转其磁性方向,从而有效地擦除记录的数据。“
持续运营,有起有落: • 2022 年 4 月和 5 月。我们没有记录到新的擦除器攻击,乌克兰的破坏性攻击也较少。在俄罗斯,我们再次观察到大量数据泄露的报告,DDoS 攻击减少,5 月份,工业控制系统 (ICS) 开始受到攻击。在欧盟国家,DDoS 攻击激增。• 2022 年 6 月- 10 月。在乌克兰,网络钓鱼攻击仍在继续,破坏性攻击很少,没有新的擦除器报告。我们注意到针对俄罗斯的 DDoS 或泄漏数量有限。还声称对 ICS 进行了其他攻击。在欧盟国家,DDoS 攻击较少。• 2022 年 11 月至 12 月。乌克兰报告了新的 Wiper 攻击。针对欧盟国家和其他向乌克兰提供支持的国家的 DDoS 攻击激增。