摘要 — 演示了一种用于大气二氧化碳 (CO 2 ) 集成路径差分吸收激光雷达的磷化铟光子集成电路 (PIC)。PIC 由两个宽调谐采样光栅分布布拉格反射器 (SGDBR) 激光器、定向耦合器、相位调制器、光电二极管和半导体光放大器 (SOA) 组成。一个 SGDBR 激光器(前导)使用片上相位调制器和台式 CO 2 Herriott 参考单元锁定在 1572.335 nm 处的吸收线中心。另一个 SGDBR 激光器(跟随器)在 1572.335 nm 附近以 ± 15 GHz 的频率步进,以扫描目标 CO 2 吸收线。跟随器激光器通过光学锁相环偏移锁定到前导激光器。跟随器激光器后的 SOA 在每个频率步进处产生一个脉冲,以创建对目标 CO 2 吸收线进行采样的脉冲序列。根据目标性能要求对 PIC 组件和子系统进行特性描述和评估。与自由运行相比,引导激光器在锁定状态下的频率稳定性标准偏差提高了 236 倍,而与引导激光器相比,在 2 GHz 编程偏移下,跟随激光器的频率稳定性标准偏差为 37.6 KHz。
诱饵:在钓鱼游戏中,不同类型的诱饵用于捕捉不同类型的鱼。同样,网络犯罪分子使用各种类型的诱饵(如钓鱼电子邮件或虚假网站)来诱骗用户点击链接或输入敏感信息。 上钩:一旦鱼上钩,鱼钩就被设置好了。同样,一旦用户陷入钓鱼骗局或下载恶意附件,攻击者就会在系统中立足并开始攻击。 收线:一旦鱼上钩,目标就是快速安全地将其收线。在网络安全中,一旦检测到攻击,目标就是遏制攻击并防止进一步损害。 引诱:在钓鱼游戏中,垂钓者可能会使用诱饵来模仿特定类型鱼的运动并将其吸引到诱饵上。同样,攻击者可能会使用社会工程技术来操纵用户泄露敏感信息或下载恶意软件。 广撒网:在钓鱼游戏中,钓鱼者可能会广撒网以增加捕鱼的机会。同样,攻击者可能会使用群发垃圾邮件活动或其他自动化工具来瞄准大量潜在受害者。
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。 简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。 该方法使用一对在圆形极性轨道形成中飞行的小卫星。 每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。 每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。 通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。该方法使用一对在圆形极性轨道形成中飞行的小卫星。每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。
远程监测痕量大气气体(标签)的浓度(包括许多有害混合物)仍然是一个紧迫的问题。IR区域,尤其是2.5-14 µm范围,对于大气发声非常有前途,因为该范围包括几乎所有大气气体的强吸收线。此外,IR范围包括六个透明窗口。为了覆盖近红外和中期范围,通常使用非线性晶体的光学参数振荡器(OPO)的辐射[1-3]。在这项工作中,我们考虑了一个激光系统(在Solar Laser System Company设计),该系统是设计差异吸收激光龙的一部分;它提供了3–4 µM光谱范围内的纳秒辐射脉冲的可调节产生。根据激光的规格,估计了在此光谱范围内HCl和HBR沿对流层路径的可能性。提出了搜索信息波长的结果以及在上述气体的差分吸收声音中计算激光雷达回声信号的结果。
我们报告了Microquasar Grs 1915 + 105中的一个重大重塑事件,该事件于2021年7月观察到,其中有更好和努力。此事件的特征是柔软状态的准周期振荡(QPO),但通常没有这些振荡。它也以磁盘风电离度的增加为标志。通过使用Hilbert-Huang Transform(HHT),我们使用NICER和NUSTAR的数据从光曲线中构成了稳定的低频QPO。我们的光谱分析显示了Fe XXV吸收线的变化较弱,并且使用QPO相的Fe XXV吸收边缘发生了巨大变化。其他光谱参数,包括光子指数和种子光子温度,与QPO相正相关,但电子温度成反比。基于我们的发现,我们建议观察到的QPO是由磁性活性而不是动力引起的。磁场驱动了高电离低速材料的失败磁盘风。这些结果支持积聚弹出不稳定性模型,并提供了对被黑洞磁化的吸积 - 注射过程动力学的更深入的见解。
该化学在空间中的研究被不同地描述为宇宙化学,宇宙化学。由恒星核合成形成的元素可以组合形成不同类型的分子。将旧的,安静的环境信封和行星星云之星,星际介质(ISM)和盘子周围的圆盘置于恒星之间的星际介质。数量密度约为90%氢,9%的氦气和1%的重元素[2]。在电磁谱的不同区域工作,天文学家在较小程度上测量了气体的组成,并在较小程度上测量了灰尘颗粒。气体中的基本丰度符合氢在主导的电线,氦的浓度可能为10%氢气,重要元素碳,氮和氧气氢密度为103-104。有力消除了电线中发现的一些重元素。散射云气体;可能是这些元素(例如硅)是包括灰尘颗粒[3]。与大多数来源一样,天空比碳更基本的氧气。除了进入该行之外,还有几百个未知的吸收线,其中许多比习惯宽。
电磁诱导的透明度(EIT)是一个连贯的光学过程,在原子培养基中的宽吸收线中提供狭窄的透明峰。EIT的全dielectric跨表面类似物已使纳米光子学场中的新发展获得了较小,更有效的慢灯设备和高度敏感的检测器,而无需量子方法。然而,尽管近红外(N-IR)区域很少报道全磁化元面的EIT响应的动态控制,尽管通过可重新配置的EIT系统将启用更广泛的应用程序。在这项研究中,我们意识到了硫元素(GST)的硫元化物(GST)元素元面,它通过光学地驱动GST培养基中的无定形 - 晶状相变的变化,具有动态调节的EIT响应。只有几十纳米厚,纳米结构的GST膜表现出MIE共振,这些共振通过激光诱导的相变经频谱修饰,在N-IR区域提供了高度相对调制的对比度为80%。此外,在此透明度“窗口”中观察到导致“慢光”行为的极端分散体。此外,N-IR梁的组延迟在相变下可逆开关。测量与数值模拟结果和现象学建模既一致。我们的工作促进了新型紧凑型超快N-IR全息图,过滤和超敏感探测器的发展。
该技术的原理已在之前的报告中描述过,这里不再详细讨论。更多详细信息可参见 Bell et al, 1994, Adrian et aI, 1994 和 Notholt et aI, 1994 及其参考文献。总之,NPL 开发了一种高分辨率光谱仪,在 2.5-13.5 pm(750-4000 cm-1)的中红外光谱区域内,最大光程差为 2.57 m(L\v Iv <3.2 x 1Q-6)。图 3 显示了该仪器的示意图。在本程序过程中,通过使用一系列窄带光学滤波器,该仪器的检测灵敏度得到了提高。此外,该仪器已进行了修改,可以同时在长波长和短波长通道中进行测量。这些改进使 NPL 能够从单个高分辨率光谱测量 CION02 的垂直柱,CION02 是一个非常重要的临时平流层水库,与氯催化臭氧消耗有关,该光谱可在 73 秒内获得。图 4 显示了在 SESAME 活动第一阶段使用 FTIR 仪器获得的光谱示例。从图 4 可以看出,CION02 v 4 Q 分支吸收与 CO2 和 03 吸收线强烈混合。CIONO2 垂直柱的检索需要对应用于具有重叠吸收的其他分子的拟合程序进行重大改进。这需要一个两阶段程序。在第一阶段,H2O、CO2 和 03 特征拟合在宽光谱窗口 (779.0-780.7 cm-1) 上。在第二阶段,CION02 特征拟合在从 779.9-780.3 cm-1 延伸的较窄窗口上。估计的检测限以斜柱表示 (斜柱 = 垂直柱 x 大气质量因子),估计为 2 x 1015 mol cm-2。应该注意的是