摘要:在这项工作中,提出了一种新型的MEMS振动陀螺仪的机械放大结构,目的是提高其灵敏度。该方案是使用微机械V形弹簧系统实现的,作为挠度放大机制。首先证明了该机制的有效性,用于电容式完全脱钩的四元陀螺仪。概念证明垂直轴机械放大的陀螺仪,已设计,模拟和制造365%的放大系数,并在本文中介绍了评估的结果。实验结果表明,陀螺仪的固有频率为11.67 kHz,全尺度测量范围为±400° /s,最大非线性为54.69 ppm。偏置稳定性为44.53° /h。实验结果表明,这种四边形陀螺仪的性能是将来达到导航等级的一种非常潜在的新方法。
泵浦固态 (DPSS) 主振荡器放置在密封的单片块中,产生高重复率脉冲串 (90 MHz),单脉冲能量低至几 nJ。二极管泵浦放大器用于将脉冲放大至 30 mJ 或高达 40 mJ 的输出。高增益再生放大器的放大系数接近 10⁶。在再生放大器之后,脉冲被引导至多通功率放大器,该放大器经过优化,可从 Nd:YAG 棒中高效提取存储的能量,同时保持近高斯光束轮廓和低波前畸变。输出脉冲能量可以大约 1% 的步长进行调整,而脉冲间能量稳定性在 1064 nm 时保持在小于 0.5% rms。安装在恒温炉中的角度调谐 KD*P 和 KDP 晶体用于第二、第三和第四谐波的产生。谐波分离器保证引导至不同输出端口的每个谐波具有高频谱纯度。
为了简化人力资源管理并降低成本,现在越来越多的控制塔被设计为远程控制,而不是直接植入机场。这个概念被称为远程控制塔,它提供了一种“数字”工作环境,因为跑道上的视图是通过位于实际机场的摄像头远程广播的。这为研究人员和工程师提供了开发新颖交互技术的可能性。但这项技术依赖于视觉,视觉主要用于向操作员提供信息和交互,而现在视觉已经变得超负荷。在本文中,我们专注于设计和测试依赖于人类听觉和触觉的新型交互形式。更准确地说,我们的研究旨在量化基于空间声音和振动触觉反馈的多模态交互技术对改善飞机定位的贡献。应用于远程塔环境,最终目的是增强空中交通管制员的感知并提高安全性。在模拟环境中,通过涉及 22 名空中交通管制员,比较了三种不同的交互模式。实验任务是通过两种可见性条件,利用听觉和触觉定位不同空域位置的飞机。在第一种模式(仅空间声音)中,声源(例如飞机)具有相同的放大系数。在第二种模式(称为音频焦点)中,
摄影师在早期的 DSLR 相机中发现,镜头放大系数、校正系数或焦距转换系数各不相同。在每台传感器小于 36 x 24mm 的 35mm 格式数码相机上,最初为 35mm 相机设计的镜头的焦距都比其原始规格更长。计算如下:APS-C 传感器约为 22 x 15mm。其对角线约为 26.6mm。APS-H 传感器(仅在佳能 EOS-1D、-1D Mark II 和 -1D Mark II N 中发现 - 稍后会详细介绍)约为 29 x 19mm,因此其对角线大约为 34.7mm。全 35mm 画幅的对角线约为 43.3mm。将 43.3 除以 26.6 可得出 APS-C 镜头转换系数 1.6 倍;将 43.3 除以 34.7 可得出 APS-H 镜头转换系数 1.3 倍。对于 APS-C,20mm、50mm 和 300mm 镜头在功能上将分别变为 32mm、80mm 和 480mm。原始镜头现在将具有 1.6 倍长镜头的视野或视角。对于 APS-H 传感器,变化不太明显:300 变为 390、50 变为 65 和 20 变为 26mm。以下是显示相对差异的图表: