作为NGBMS的一线疗法,Temozolomide的有效性自然受到了特别的关注,并且也在RGBMS中进行了测试。Temozolomide在1999年和2000年的两个II期试验中达到了令人满意的功效和可接受的安全性(10,11)。但是,在2007年II期对CNS肿瘤儿童的试验中,替莫唑胺的客观反应率(ORR)不符合预期(12)。我们认为,这种偏差可能是由于肿瘤病理学的差异。此外,救援试验建议连续剂量强症替莫唑胺方案作为主动选择,而6个月的PFS为23.9%(13)。The methylated O 6 - methylguanine DNA methyltransferase ( MGMT ) promoter was identified as a strong beneficial prognostic biomarker for temozolomide rechallenge in both the RESCUE trial and DIRECTOR trial ( 14 ).此外,II期双臂主管试验表明,接受最后一次替莫唑胺的患者对剂量强化的Temozolomide rechallenge的反应更好。o 6-在临床前研究中,已证实苄鸟氨酸,二硫酸酯和铜被证实为替莫唑胺敏化剂。不幸的是,这些药物并未增强替莫唑胺抗性RGBMS中替莫唑胺的治疗作用(15,16)。抗替莫唑胺抗性神经胶质瘤的最佳策略仍然难以确定,而替莫唑胺的甲基阵利可用于甲基化的MGMT启动子患者。
摘要:光引起的n = n双键异构化的偶氮元素位于众多应用的核心,从催化,能源储存或药物释放到光遗传学和光电学。While efficient switching between their E and Z states has predominantly relied on direct UV light excitation, a recent study by Klajn and co-workers introduced visible light sensitization of E azoarenes and subsequent isomerization as a tool coined disequilibration by sensitization under confinement (DESC) to obtain high yields of the out-of-equilibrium Z isomer.这种宿主 - 阵线方法仍在高级多组分分子系统中的适用性和功能有限的小型,最小取代的偶氮烯酸含量仍然存在。在此,我们扩展了DESC概念,以引导表面活性剂超分子在空气水接口处。利用可拍摄的芳基唑吡唑两亲物利用我们的专业知识,我们通过可逆的E -Z同源化引起了表面张力和表面过量水的实质性改变。在研究了带电和负电荷的表面活性剂与宿主的结合后,我们发现两种异构体的可见光照射时表面活性差异的程度与直接UV光激发观察到的态度相当。该方法在较大的浓度(从µm到M m)上进行了证明,并且可以使用绿色或红光同样激活,具体取决于选择的敏化剂。在复杂的分子网中,可见光的光电开关敏化的直接实现 - 展示了DESC如何改善现有光响应系统的改善,并允许开发新型应用程序,专门用可见光驱动。
,我们通过一种溶剂提取方法从天然染料源蓝莓中提取花色苷,用于在制造染料敏化太阳能电池(DSSC)中用作敏化剂。在提取花青素时,我们使用了乙腈,丁醇,乙醇和丙酮等溶剂,并检查了它们对DSSCS性能的影响。当前,可用的商业级二氧化钛(TIO 2)粉末由80 mol%金红石和20 mol%的解剖酶相组成。在准备光阳极的制备中,Tio 2粉末是通过医生刀片技术应用的。准备好的光轴浸入了提取的花青素染料中,并在整个过程中屏蔽了光线,并在不同的持续时间内暴露于不同的持续时间。为了制备电极,将大约1 nm厚的铂膜溅射到粘锡氧化物(ITO)玻璃底物上。最后,通过染料染色将涂层光射流用电极密封。为了评估制造的DSSC的性能,通过紫外线可见光谱(UV- VIS)和太阳能模拟器测量了入射光子到电子转换效率(IPCE)。结果表明,从丁醇中蓝莓提取的染料持续12小时的DSSC效率最高。在这项研究中,TERT叔丁醇是用于制造DSSC的最佳提取溶剂,从蓝莓中提取的花青素,效率为0.45%,填充系数为68.20%。需要进一步的研究才能找到一种更合适的溶剂和提取方法,而这项研究的结果证明,从天然染料来源(例如蓝莓在太阳能细胞技术中)使用染料是有希望的。
CRISPR 技术以一种前所未有的方式彻底改变了生物医学领域,PCR 可能是人们能想到的唯一例子。该系统最初在细菌中发现,是一种适应性免疫系统(Makarova 等人,2011 年),很快就被证明是生物医学中最强大的工具之一,其应用于基因操作,包括敲除、抑制、激活、编辑(Adli,2018 年)、功能研究和治疗学(Steinhart 等人,2017 年;Uddin 等人,2020 年)。大规模筛选是一种 CRISPR 应用,用于寻找参与感兴趣的生物途径的基因。 CRISPR-Cas9 系统能够靶向和敲除任何感兴趣的基因,因此已被用于各种全基因组筛选研究,在这些研究中,研究人员从 sgRNA 文库中筛选出与感兴趣过程相关的间隔物 (Shalem 等人,2014 年;Wang 等人,2014 年)。这些功能基因组研究引入了 CRISPR 时代之前未曾考虑过的新的潜在治疗靶点。这些研究的一个例子是我们进行的全基因组 CRISPR-Cas9 筛选,并引入了 SH3D21 作为吉西他滨的新型敏化剂 (Masoudi 等人,2019 年)。鉴于 CRISPR-Cas9 基因组规模筛选的复杂性和多步骤性(参见补充信息,补充图 1),研究人员在开始之前应该注意一些关键点和挑战。这篇评论将全基因组 CRISPR-Cas9 筛选的经验分享给那些正在考虑使用该系统进行大规模筛选但尚未有过此经验的研究人员。作者将逐步引导读者完成整个过程,提及他的经验/挑战,并在适当的情况下展示原始结果作为示例。
相对于时间边界之前的波浪的频率。但是,最近的Researchontime-varyingmedia探索了更复杂的超材料时间边界提供的许多机会。例如,各向异性的时间边界起作用“反棱镜” [9],可以重定向预测波的能量[10],并且表现出无产生后向波的颞brewster角度[11,12]。频率分散时间边界可实现多频产生[13,14],而非偏置时间边界表现出法拉第旋转效应[15]。将两个或多个边界组合到时间多层系统中提供了进一步的设计灵活性,包括控制向后波及其光谱响应[16-19]。此外,当大量的时间边界是合并的时,thesystemcanbeeffectivementive deScriveTialDasaphosedasa photonic时间晶体[20-22]或时空超材料[23]允许获取新形式的光传播形式。时间边界对于量子光学的领域也很感兴趣,在该领域中,它们已被证明会导致挤压转换[24 - 26]。它们还会修改量子发射器[27]和游离电子[28]的光发射。与经典案例类似,预计超材料提供的设计灵活性将为量子变化媒体的研究开辟新的途径。随着这一动机,在这项工作中,我们提出了各向异性时间边界如何在真空放大效果的角度特性上提供控制(见图1)。真空放大效应[29,30]由电磁真空状态产生的光子产生,这是由量子真空波动和动态边界之间的相互作用产生的。如图1所示,各向异性的时间边界允许控制生成的光子的角度分布,包括抑制沿特定方向的光子抑制光子的生产,并贯穿着光子的光子发射,同时将它们全部浓缩到单个方向上,并产生了频率和生成的快速词,并产生了敏感的快速动物量,并产生了敏感的敏化剂量,并产生了敏感的敏捷量。共鸣。
糖尿病是一种示例性的慢性疾病,不仅在印度,而且在世界范围内都达到了流行比例。据估计,到2035年,2型糖尿病(T2D)的全球负担预计将增加到5.92亿[1]。2017年印度有超过7290万例糖尿病[2]。有证据表明流行性过渡,糖尿病患病率在具有较高经济发展水平的州的社会经济类别较低的城市地区较高。糖尿病中有足够的证据表明“亚洲表型” [3]。亚洲人的T2D风险比白人欧洲人高2-4倍,体重无关,并且比他们早5 - 10年[4]。二甲双胍被认为是全球最广泛使用的粘液降低剂,对于任何被诊断为2型糖尿病的人,美国糖尿病协会(ADA)建议进行二甲双胍治疗,并将糖化血红蛋白(HBA1C)保持在≤7%[5]。ADA还建议,当患者的基线HBA1C高(≥9.0%)时,应使用2种非胰岛素药物的组合来实现靶标HBA1C [6]。已经假设,当二甲双胍与其他类别具有不同作用机理的药物结合时,长期血糖有效性或“耐用性”可保持,因此也有助于保留β细胞功能[7]。口服抗糖尿病药物的主要类别包括Biguanides,噻唑烷二酮(TZD),磺酰脲,硫糖糖糖共转运蛋白(SGLT2)抑制剂,α-氯酸糖苷酶抑制剂,二肽基肽酶4(Dppp-4(Dppp-4)(DPPP-4)(DPPP-4)(dppp-4)(dppp-4)(dppp-4)insmegitiDIDER。印度市场上有几类药物,尽管印度次优控制的糖尿病的负担日益增加。Lobeglitazone最近被印度的印度药物控制师印度药物调节剂批准为印度的葡萄糖剂。叶litazone渴望到噻唑烷二酮(TZDS)的群体,它们充当过氧化物酶体增殖物激活受体的激动剂[5]。叶litazone是PPAR-G的选择性和有效的激动剂,是作用于细胞内代谢途径上的胰岛素敏化剂,可增强胰岛素作用并提高关键组织中的胰岛素敏感性[5-7]。叶litazone激活PPAR-G,从而导致胰岛素抵抗的降低,从而促进间质干细胞的分化成脂肪细胞,从而增强了外周脂肪细胞中的脂肪形成。此外,肝和外围触发液的减少,内脏脂肪细胞的降低和脂联素的增加[5]。这显着改善了胰岛素抵抗,代谢综合征并减少了胰岛素的需求[8]。
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。
Glasgow, G1 1XL, UK Corresponding authors, e-mail: * arnaoutakis@hmu.gr , # bryce.richards@kit.edu Abstract Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics.但是,所需的超高光强度和灯笼离子的狭窄吸收带限制了有效的太阳能利用率。在本文中,我们报告了令人兴奋的上转换器,其浓度的阳光在通量密度高达2300个太阳下,辐射仅限于硅带隙以下的光子能量(对应于波长= 1200 nm)。上转换到= 980 nm是通过在荧光聚合物基质中使用六角形的Erbium掺杂钠yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium。上转换具有与辐照度的非线性关系,因此在高辐照度下,在过程变为线性的情况下发生阈值。对于β -Nayf 4:25%ER 3+,我们在320个太阳下浓缩的阳光下发现了两个光子阈值。值得注意的是,该阈值低于相应的激光激发,并且可能与所有共同激发的ER 3+离子水平和激发的吸收有关。这些结果突出了一条利用光伏的太阳光谱的途径。简介上转换(UC)是一个非线性光子过程,可以添加来自两个或多个较低能量光子的能量,从而导致单个较高能量光子的发射[1]。第一个激发态通过基态吸收(GSA)填充。uc已在激光器[2],生物医学成像[3],[4],抗爆炸[5],[6],塑料回收[7]和太阳能收获[8],[9],[9],[10]中进行了研究。对于光伏,这可能是绕过太阳能光谱中与子频带光子相关的太阳能电池传输损失的一种有前途的方法[11]。计算表明,在理想情况下,UC可以提高单连接太阳能电池的理论上效率(Shockley-Queisser)极限从33%到48%[11]。有效的稀有地球[12],[13],[14]上转换器的外部转换器高达9.5%,外部UC量子产量(EUCQY),这是外部发射与入射光子的比率。稀有的稀土上转换器具有较高的近红外(NIR)Eucqy的表现最高的硅[14],[15]和钙钛矿太阳能电池[16]。在三价灯笼离子中,UC通过部分填充的4F壳中的辐射过渡发生。额外光子的激发态吸收(ESA)可以产生更高的激发态。然而,可以通过第一个激发态以第一个激发态的能量传递向上转换(ETU)来进行更有效的过程,尤其是在较低的激发能力密度下,如图1(a)。一个离子的能量被捐赠给附近的离子,将其推广到更高的亚稳态状态,而敏化剂的能量又回到基态。