高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
由于单片石墨烯具有重量轻、机械强度高、电导率高等特性,石墨烯纤维引起了越来越多的关注。因此,石墨烯纤维被认为是一种很有前途的纤维电子电极材料。氧化石墨烯(GO)分散体的湿纺是目前合成石墨烯纤维最常用的方法。除了使用GO水分散体外,开发基于有机溶剂的GO分散体也很重要,因为这种分散体比水介质更能分散功能性纳米材料。在本期的ACS Central Science中,Kim和同事报道,在GO分散的有机溶剂中添加少量水可以有效地使GO片水合,1从而促进高度稳定的液晶GO相和电化学剥离石墨烯(EG)的形成(图1)。该方法可提供一种通用且有效的策略,从GO有机分散体中生产高性能混合石墨烯纤维。以前,GO纺丝原液是采用典型的湿纺工艺制备的,即将GO片材分散形成稳定的溶液,然后将其注入凝固浴中生产GO纤维。用还原剂或热处理还原GO片材后得到石墨烯纤维。为了赋予石墨烯纤维增强的机械强度和电导率,必须在GO纺丝原液中实现稳定的液晶相,以便将高度排列的GO片材有效地转移到石墨烯纤维中。2-4
图 2。通过离子交换剥离块状 MMT 和真空过滤 MMT 薄片分散体来制造独立式 MMT 膜的过程。(a) 块状 MMT 粉末。(b) 在红色激光束下对块状粉末进行离子交换剥离后形成的 MMT 薄片水分散体。(c) 通过真空过滤薄片分散体形成的独立式 MMT 膜。(d) MMT 的 XRD 图案,显示 (001) d 间距为 12.3 Å。(e) 剥离的 MMT 薄片的 AFM 图像和 (f) 剥离的 MMT 薄片的相应 AFM 高度分布,显示单层厚度。
Carbopol ® 971P NF 聚合物 卡波姆均聚物 A 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 974P NF 聚合物 卡波姆均聚物 B 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 980 NF 聚合物 卡波姆均聚物 C 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 5984 EP 聚合物 卡波姆均聚物 B 型 卡波姆 羧基乙烯基聚合物 Carbopol ® ETD 2020 NF 聚合物 卡波姆互聚物 B 型 --- --- Carbopol ® Ultrez 10 NF 聚合物 卡波姆互聚物 A 型 --- --- * 2006 年之后的 USP/NF Carbopol ® 聚合物分散体的 Brookfield 粘度 必须中和 Carbopol ® 聚合物才能达到最大粘度。在分散体中加入中和剂后,会逐渐变稠。最大粘度通常在 pH 值为 6.0 - 7.0 时达到。当 pH 值为 9.0 或更高时,Carbopol ® 聚合物的粘度将开始下降。这是由于存在过量电解质,它们会影响离子化羧基的静电排斥。为了在 pH 值低于 5 和高于 9 时获得高粘度,建议增加 Carbopol ® 聚合物的浓度。此外,应避免在低 pH 值下使用低浓度的聚合物,以实现稳定的配方。对浓度为 0.2 - 2.0 wt. % 的几种 Carbopol ® 聚合物的水分散体进行了布鲁克菲尔德粘度测量。图 2 - 7 显示了每种聚合物的一般行为,基于每种聚合物一批的数据。分散体在制备时(通常表示为 pH 3.0)或在用氢氧化钠溶液中和至 pH 4.0 - 7.0 后进行测试。聚合物浓度增加会导致粘度增加。一般而言,Carbopol ® 聚合物浓度越高,pH 值越容易达到稳定状态。图 2:pH 值和浓度对 Carbopol ® 971P NF 聚合物分散体粘度的影响
摘要:传统上牙科中使用的抗菌剂的持续和不当使用导致了多重耐药 (MDR) 菌株的出现以及微生物的突变。这一问题导致了多种纳米粒子的开发,以对抗耐药性病原体。二氧化钛 (TiO 2 ) 纳米粒子由于其化学稳定性、无毒且前体廉价而成为有吸引力的抗菌剂。因此,我们探索了 TiO 2 基纳米分散体,通过使用众所周知的抗菌剂(例如次氯酸 (HOCl))来制备它们,以增强抗菌效果。在本研究中,合成并表征了溶胶-凝胶基 TiO 2 NPs-HOCl 纳米分散体。通过培养不同浓度的纳米分散体,使用变形链球菌、金黄色葡萄球菌、粪肠球菌和白色念珠菌菌株通过微量稀释测定来评估抗菌效果。为了评估细胞毒性作用,接种了根尖乳头干细胞 (SCAP),并使用 MTT 测定法进行评估。纳米分散体表现出增强的抗菌作用,几乎没有细胞毒性。基于 HOCl 的纳米分散体表现出更大的抗菌作用和高稳定性。因此,它可以用作治疗各种牙科病原体的有前途的抗菌剂。关键词:TiO 2 纳米粒子、HOCl、抗菌作用、细胞毒性作用、SCAP。
不连贯的激光脉冲的自我形成似乎是自相矛盾的,既涉及强大的不稳定性和时间定位过程。不一致的脉冲状态在超快激光动力学中均经常出现。在本文中,我们通过实时录制不同的腔体分散液体下的不一致的脉冲动力学来带来决定性的实验数据。我们的测量值强调了发挥作用的不同主导机制。虽然孤子脉冲塑形有助于在异常分散体中创建一堆混乱的脉冲,而正常分散体状态下的不一致的脉冲遵循强烈的湍流耗散动力学。数值模拟在定性上很好地重现了观察到的动力学的最终堆积阶段。通过显示共同的动力学特征和差异,这些结果支持了不一致的耗散孤子的一般概念的发展。
摘要:本文提出了一个实验程序,用于在高达208 bara的高架压力下生成CO 2的水性纳米泡分散。它直接设置了总体积,外部压力和温度,并且整体组成是由水纳米泡分散体恒定质量扩展到具有材料平衡的低压(例如大气压)的。脱离离子水的结果表明,纳米泡分散体中的CO 2含量随系统压力而增加。在207.8 bara处获得了最大的CO 2浓度2.3 mol/L,该浓度比207.8 Bara时CO 2的固有溶解度高42.9%。在138.9 bara时观察到最大的溶解度增强,52.8%,与固有的溶解度相比。还用基于甲酸钠的缓冲溶液测试了CO 2的水纳米泡分散体,这在208 Bara时导致CO 2的1.52 mol/L的CO 2。这比具有相同离子强度的氯化钠溶液中Co 2,0.86 mol/L的固有溶解度高77%。从实验数据的热力学分析中的一个重要观察结果是,纳米泡本身可能不是CO 2的主要存储,但是它们的存在可以提高CO 2的水相过饱和水平。这与使用纳米跟踪分析直接测量气泡性能一致,其中CO 2作为气泡的含量比CO 2的固有溶解度小得多,即使气泡数密度为10 8 ml -1,并且气泡半径大于100 nm。
药物纳米舒张,也称为纳米晶体,主要是由表面活性剂和/或聚合物稳定的不溶性药物颗粒的水分散体。纳米舒张作为液体配方不稳定。纳米悬浮液对固体剂型形式的固化是将纳米晶体优势与固态优势相结合的一种方式。在这篇综述中,有关纳米舒张的稳定和产生的进展被覆盖了。更新用于将纳米司张转换为固体口服剂型的方法(例如,粉末,颗粒,颗粒,片,片剂和电影)。从这些方法中,喷雾干燥和冷冻干燥被广泛使用。肉芽和热融化的挤压可以直接下游处理,同时打印具有剂量个性化的潜力。重点是新型配方(例如纳米晶体,纳米晶体固体分散体),这可以进一步增强可溶性溶解的药物的溶解和生物利用度。