在 FCDO 研究的支持下,FSD Africa 开发了 Cavex(碳价值交换)等高风险、高影响力项目,从最初的想法发展到可扩展的平台。Cavex 有可能像 15 年前 M-PESA 引领全球数字金融浪潮时移动货币那样扩大规模。Cavex 将把英国等国家希望抵消碳排放的公司与非洲希望从明火转向清洁能源炉灶的创新者和农村家庭联系起来。炉灶中的嵌入式芯片使审计人员能够确认炉灶正在使用并且节省了碳排放。然后,M-PESA 等移动货币平台可以让数万个家庭直接受益于这些碳信用额,通常每年价值 40 美元。FSD Africa 团队的目标是到 2030 年向非洲各地的许多组织和个人提供 5 亿美元的气候融资,并通过 Cavex 支持消除或避免 1 亿多吨的碳补偿。
摘要 除了 Hezârfen Ahmed Çelebi 的飞行试验等个别尝试外,我国的航空冒险始于奥斯曼帝国末期进口的第一批飞机。尽管在共和国成立初期,土耳其的目标是将其从制度上转变为国家产业,但在接下来的几年里,它完全失败了,直到 2010 年代,土耳其在航空发动机领域几乎完全依赖外国。在塞浦路斯禁运期间开始的认识已成为一项国家政策,并在过去 20 年中转变为“国家技术倡议”。TUSAŞ 发动机工业公司 (TEI) 将其新的使命和愿景与国家对国防工业的大力支持相结合,在过去 8 年中开发了 11 种不同的、本土的和国家制造的航空发动机,取得了巨大成功,并在土耳其航空航天史上留下了不可磨灭的印记。本研究分享了近年来 TEI 研发的多款国产发动机的故事,其中一些发动机已在天空中成功运行了数万小时。
关于增材制造 (AM) 的热门讨论通常认为 AM 将导致从集中式制造转向分布式制造。然而,分布式配置在实现规模经济方面可能面临更多障碍。我们结合基于流程的成本模型和优化模型来分析制造地点的最佳位置和数量,以及生产、运输和库存成本之间的权衡。我们以商用航空维修市场为例,以钛喷气发动机支架为例,作为非飞行关键部件类别的典型。我们针对三种不同的场景进行分析,一种对应于当前的技术状态,两种代表 AM 技术的潜在改进。我们的结果表明,当考虑到一系列合理的技术改进时,成本最小化的制造地点数量不会有显著变化。在这种情况下,分布式制造仅适用于一组非关键组件,这些组件可以在同一设备上生产,认证要求最低,年需求量达数万个。对于不需要热等静压的组件,分布式制造在小批量生产时具有吸引力。
The Traditional NASA Community: The Agency, Industry, and Academia NASA's civil servant workforce of scientists, engineers, program managers, and others have been a critical force in the design, development, test, operation, and management of spacecraft and aeronautics systems and an assortment of scientific research and technology projects ranging from making discoveries throughout the solar system and universe to maintaining a human presence in Earth orbit.今天,我们高度技能和以任务为中心的员工(如今约有17,000名)对于NASA的持续创新和勘探成功至关重要。NASA的最大成就并不是NASA的独自一人。与NASA劳动力合作实现雄心勃勃的太空目标,已经有数万个人来自学术机构,私人公司和其他太空机构。今天,NASA的80%以上的资金支持该机构的招标和奖励。各种规模和学术界专家的公司通过合同和同行评审的赠款从事这项工作。此外,国际太空机构和其他各种组织每年进行数百个合作。这些合作是通过签署的协议和谅解备忘录以不交换基础进行的。
我们介绍了基于快速贪婪的等效搜索算法,通过合并本地学到的贝叶斯网络来学习基因调节网络的结构的新方法,用于学习基因调节网络的结构。该方法在Matthews相关系数方面与艺术的状态具有竞争力,该系数既考虑到精度和召回率,同时也可以在速度方面进行改进,扩展到数万个变量,并能够使用有关基因调节网络拓扑结构的经验知识。为了展示我们的方法扩展到大规模网络的能力,我们使用来自不同大脑结构的样本(来自艾伦人脑大脑图书馆)的数据来学习全人类基因组的基因调节网络。此外,这种贝叶斯网络模型应以专家的清晰度来预测基因之间的相互作用,遵循当前可解释的人工智能的趋势。为了实现这一目标,我们还提出了一种新的开放式可视化工具,该工具促进了大规模网络的探索,并可以帮助寻找感兴趣的体验测试节点。
发射市场的增长部分得益于发射成本的持续下降,这得益于私人资本和火箭可重复使用性,再加上卫星制造技术的进步,使得生产更便宜的卫星成为可能。1 商业航天公司的快速发展也降低了发射成本,降低了卫星公司的进入门槛,这反过来又创造了更多发射的需求并进一步降低了成本。从 1980 年到 2019 年,重型火箭发射到低地球轨道 (LEO) 的成本从每公斤 65,000 美元降至每公斤 1,500 美元,降幅超过 95%。与前七十年相比,这一大幅降低导致近年来卫星发射数量呈指数级增长。 1 展望未来,未来五到十年,在轨卫星数量可能会增加八倍,到 2032 年,预计全球在轨卫星数量将达到数万颗。2 到 2030 年,大多数计划中的卫星发射将集中在建立低地球轨道 (LEO) 通信星座,因为其可达性、成本效益高,且具有巨大的能力扩展和应用潜力。
摘要 人类面临生存危机;太空垃圾有可能变成“塑料漂流岛”。大型星座 (LC) 系统计划在低地球轨道 (LEO) 上运行数万甚至数十万颗卫星,这对太空时代构成了不光彩的终结的威胁。无法机动的卫星无法避免碰撞。即使是可以机动的卫星也可能发生碰撞。LEO 卫星之间的碰撞往往会造成灾难性的后果,导致大量新的碎片物体散布在 LEO 高度。我们开发了一个模型来探索凯斯勒综合症时间对卫星数量、卫星大小和 LC 轨道的依赖关系。模拟表明:1) 小型卫星(<25 千克)的 LC 比中型(25 至 300 千克)或大型(>300 千克)卫星群安全得多;2) 如果部署中型或大型卫星的 LC,它们在较低轨道(例如 450 公里)比在 600 公里或 1,200 公里轨道)更安全。演示了轨道容量(可持续部署的卫星数量和类型)和临界点(在此临界点不再可能通过停止发射来避免凯斯勒综合症)概念。
ENGIE、迪朗斯、吕贝隆、韦尔东市区 (DLVA) 和液化空气集团签署合作协议,开发“HyGreen Provence”项目,旨在生产、储存和分配绿色氢气。“HyGreen Provence”项目于 2017 年启动,将开发和验证生产 1,300 GWh 太阳能电力的技术经济条件,相当于约 450,000 人的年度住宅用电,同时通过水电解在工业规模上生产可再生氢气。该项目将分几个阶段开发,预计首批成果将于 2021 年底交付,最后阶段可能在 2027 年完成。最终,每年可以通过这种方式生产数万公吨的可再生氢气,以满足非常广泛的用途。 DLVA 市区由 25 个市镇和 65,000 名居民组成,为该项目提供了大量有利资源,包括法国最有利的日照水平之一(平均每年 1,450 小时)、大量土地供应以及能够容纳大规模集中生产可再生氢的盐腔储存场。ENGIE 和液化空气集团是致力于开发氢气解决方案的合作伙伴,他们决定与 DLVA 市区一起参与该项目,结合各自的优势:
然而,对于人或黑色和绿色垃圾袋没有任何反应。因此,我们决定进行一项研究,以提高夜间检测精度。 为了提高检测精度,我们决定使作为检测目标的图像更清晰。为了提高可视性,可以对设备本身进行改进或更换,例如安装图像锐化装置或引入可以夜间监控的红外摄像机。但缺点是每台初始投资为数十万日元至数百万日元。另一方面,有一种方法使用图像处理技术来锐化现有闭路电视摄像机拍摄的图像。该方法的模型构建成本为数万日元至数十万日元,通过将其纳入使用 CNN 模型的检测工作的第一阶段,有望实现图像锐化并提高检测精度。相机图像锐化模型。 伽玛 (γ) 校正是锐化夜间摄像机图像的图像处理技术之一。该技术利用伽马值(表示图像灰度响应特性的数值)将图像的亮度和灰度校正为最适合人类观看的值,也用于再现亮度和暗度。我们构建了一个实现该技术的图像锐化模型,锐化闭路电视摄像机图像和检测 CNN 模型的结果如图 4-8 所示。
随着嘈杂的中型量子 (NISQ) 设备的出现,实用的量子计算似乎已经触手可及。然而,要超越原理验证计算,当前的处理架构将需要扩展到更大的量子电路,这将需要快速且可扩展的量子误差校正算法。在这里,我们提出了一种基于神经网络的解码器,对于受去极化噪声和综合征测量误差影响的稳定器代码系列,该解码器可扩展到数万个量子比特(与其他最近的机器学习启发解码器相比),并且在各种错误率(低至 1%)下解码时间比最先进的联合查找解码器更快。关键创新是通过在底层代码上移动预处理窗口来自动解码小规模的错误综合征,类似于模式识别方法中的卷积神经网络。我们表明,这种预处理步骤可以在实际应用中有效地将错误率降低多达 2 个数量级,并且通过检测相关效应,将实际错误阈值提高到比传统纠错算法(例如联合查找或最小权重完美匹配)的阈值高出 15%,即使在存在测量误差的情况下也是如此。这种机器学习辅助量子纠错的现场实施将是将纠缠边界推向 NISQ 视界之外的决定性一步。