Ladics,G.S。,Selgrade,M.K.,2009。Identifying Food Proteins with Allergenic Potential: Evolution of Approaches to Safety Assessment and Research to Provide Additional Tools.调节毒理学和药理学54,S2 – S6。https://doi.org/10.1016/j.yrtph.2008.10.010
我们通过称为同时间隔号的图形宽度参数提出了一种概括间隔图等级的新方法。此参数与间隔图的同时表示问题有关,并定义为标签的最小数字D,使得该图允许d-相对的间隔表示,即间隔和标签集的分配到顶点的分配,以便在相应的间隔相对间隔内仅相邻两个角度,以及它们的实验室集合,以及它们的实验室集合。我们表明,此参数是NP -HARD来计算并给出参数的几个边界,特别表明它夹在路径宽和线性中的MIM宽度之间。对于具有有界参数值的图类类别,假设该图配备了带有恒定标签数量的同时间隔表示,我们为集团,独立集和主导集合问题提供了FPT算法,以及独立支配集合和着色问题的硬度结果。独立集和统治集的FPT结果是同时间隔数和解决方案大小。相比之下,已知两个问题都是线性含量宽度加上溶液尺寸的hard。
自 2010 年代以来,人工智能主要在识别领域取得进展,例如面部和语音识别,但最近,生成图像和语言的生成人工智能也取得了快速进展。生成式人工智能有望改变我们生活的许多方面,包括工业、政府、教育和娱乐。在这里我们考虑如何处理这种生成性人工智能。
[5] R. Schmidt 和 U. Scheuermann,“使用芯片作为温度传感器 - 陡峭横向温度梯度对 Vce(T) 测量的影响”,2009 年第 13 届欧洲电力电子及应用会议,巴塞罗那,2009 年,第 1-9 页。
1998年于东京大学研究生院文化研究科取得语言情报科学博士学位。哲学博士(学术)。现为电气通信大学信息科学与工程研究生院和人工智能高级研究中心的教授。自 2020 年起,他一直担任该大学副校长。日本学术会议准会员。 该协会前任理事。 Kansei AI Inc. 董事兼首席运营官智慧城市研究所执行顾问内阁办公室数学、数据科学和人工智能教育计划认证体系审查委员会成员。其著作《坂本真木教授教授的人工智能相关知识几乎全部教给你的书》(Ohmsha,2017年)被收录于2020年4月采用的日本教科书(学校图书馆)中。