微生物群落的特性从微生物之间的相互作用以及微生物及其环境之间的相互作用出现。在生物体的规模上,微生物相互作用是由细胞或细胞 - 资源相遇引发的多步骤过程。微生物相互作用的定量和合理设计需要量化相遇率。通常可以通过相遇内核来量化遇到的率 - 捕获相遇率对细胞表型的依赖性的数学公式,例如细胞大小,形状,密度或运动性以及环境条件,例如湍流强度或粘度。虽然已经研究了一个多世纪的遭遇内核,但通常在微生物种群的描述中没有足够的意见。此外,仅在少数典型的遭遇场景中才知道内核公式。然而,遇到内核可以通过阐明遭遇率如何取决于关键表型和环境变量来指导实验努力来控制微生物相互作用。遭遇内核还提供了在微生物种群生态模型中使用的参数的物理基础估计。我们通过审查传统和最近确定的内核来描述微生物相互作用的这种面向相互作用的观点,这些内核描述了微生物之间的相遇以及水生系统中的微生物和资源之间的相遇。
微生物群落的特性从微生物之间的相互作用以及微生物及其环境之间的相互作用出现。在生物体的规模上,微生物相互作用是由细胞或细胞 - 资源相遇引发的多步骤过程。微生物相互作用的定量和合理设计需要量化相遇率。通常可以通过相遇内核来量化遇到的率 - 捕获相遇率对细胞表型的依赖性的数学公式,例如细胞大小,形状,密度或运动性以及环境条件,例如湍流强度或粘度。虽然已经研究了一个多世纪的遭遇内核,但通常在微生物种群的描述中没有足够的意见。此外,仅在少数典型的遭遇场景中才知道内核公式。然而,遇到内核可以通过阐明遭遇率如何取决于关键表型和环境变量来指导实验努力来控制微生物相互作用。遭遇内核还提供了在微生物种群生态模型中使用的参数的物理基础估计。我们通过审查传统和最近确定的内核来描述微生物相互作用的这种面向相互作用的观点,这些内核描述了微生物之间的相遇以及水生系统中的微生物和资源之间的相遇。
这项研究的目的是基于独立消费者能源供应系统中可再生能源的能量池的多元分析。研究提供了数学公式,以优化能源复合物(EC)的主要参数和过程,以可再生能源(RES)为基础,以向约旦哈希米特王国的许多独立的农村消费者提供能源。方法论和计算模型可以考虑其他条件和约束,数据,这些条件和约束,从而为计算模型提供了灵活性和多功能性。在设计阶段使用方法和准则将基于依赖替代能源的依赖,并提高约旦政府的竞争力和成本效益,并提高农村地区低能源的独立消费者的总体成本。本文致力于解决基于自动消费者系统电力供应中可再生能源的能源复合物多变量分析效率的技术解决方案的解决方案。然而,当前的全球趋势是使电解物和燃料元件的成本降低,其可靠性会提高。为了研究氢积累系统应用的经济效率,计算计划中包括了两个模型。在模型的第一个模型中,柴油燃料价格的上涨与通货膨胀相对应,第二个柴油价格上涨燃料燃料燃料每年的通货膨胀量超过了5-10%。注意第一个选择表明,使用氢的系统在经济上是不可行的。
这项调查试图调查有关不确定性关系(UR)和量子测量(QMS)的普遍哲学的真理和定义。相应的哲学被称为未经证实的争议,被揭示为基于六个基本戒律。,但有人发现所有各自的戒律都被无法克服的义务抹黑。因此,关于ur,所指的哲学揭示了一个自我是一种不合理的神话。然后,您的出现是短暂的历史惯例,或者是简单且有限的数学公式,而没有任何必要的物理学。这样的发现加强了狄拉克的预测,即“以目前的形式无法在未来的物理学中生存”。您的著名方面激励着对QMS相关辩论的重新考虑。主要是表明,正确地,您与QM的真实描述没有任何必要的联系。对于此类描述,有必要从数学上,可观察到的量子可被视为随机变量。用单个采样的测量场景,例如波函数崩溃或Schr odinger的Cat Thought实验,被揭示为无用的发明。我们建议将QM描述为随机数据的传输过程。请注意,对于现有的量子辩论,上述UR – QMS重新估计,在问题方法中为有利可图的简约辩论提供了一些论点。这些辩论的无效方面也必须重新考虑,可能或多或少地投机愿景。
人工智能 (AI) 应用已在各行各业中普及,但向来自不同学习背景的受过教育的公民推广人工智能素养的努力却有限。在将人工智能素养课程从将概念学习与数学公式和编程代码相结合转变为从一开始就强调概念构建方面存在研究空白。本研究通过评估旨在为来自不同学习背景的大学生建立概念理解的人工智能素养课程来填补知识空白。82 名志愿者完成了两门人工智能素养课程,包括 7 小时的机器学习和 9 小时的深度学习。他们课前和课后概念测试、调查和自我反思写作任务的结果表明,这些课程成功地让参与者具备了对人工智能的概念理解。参与者对他们对人工智能的素养和概念理解的显著提高感到充满力量。人工智能素养课程成功地降低了人工智能素养的准入门槛,并满足了公众的需求。这些课程将扩大到纳入人工智能应用的开发以及有关人工智能在社会中广泛使用的道德问题的讨论。这项研究可用于指导未来培养来自不同学习背景的受过教育的公民的人工智能素养的研究。
肿瘤对治疗干预的适应性会导致患者长期预后不佳。对治疗的适应性涉及功能相关蛋白质的共同作用,这些蛋白质共同激活细胞存活程序并补偿治疗影响。然而,致癌基因对此类适应性事件的依赖性会产生新的治疗脆弱性,可以通过药物组合来靶向治疗。精准医疗方法将靶向药物与预先存在的基因组畸变相匹配,但无法解决适应性反应和由此产生的脆弱性。在这里,我们提供了 TargetScore 方法的数学公式、实现和验证。TargetScore 将针对靶向干预的集体适应性反应识别为信号网络中连接的磷酸化蛋白质的并发变化。基于适应性反应,该方法可以预测药物引起的脆弱性。使用 TargetScore,我们推断出短期(即几天)压力和长期(即几个月)获得性抗凋亡介质抑制剂 MCL1 和 BCL2 耐药性的适应性反应。通过以预测为指导的实验,我们发现乳腺癌细胞中 PARP、SHP2 和 MCL1 抑制剂之间存在协同相互作用。TargetScore 可轻松应用于现有的精准肿瘤学研究,将靶向药物组合与治疗压力下出现的分子特征相匹配。
随着行业4.0继续改变制造业领域,重点是转向产品的大规模个性化,使公司能够有效地生产满足个人客户独特需求和偏好的定制商品。这要求制造业企业具有安排过程和制造设置的灵活性和适应性。可以通过利用无线组装系统(LAS)的概念来实现产品个性化的灵活性和随后实现产品的个性化,该概念用一个系统在机器之间移动的系统,将产品替换为自动驾驶机器人(AMR),将产品安装在机器上(AMR),将产品从一种机器转移到另一台机器上,就像其生产途径一样。这需要根据其可用AMR的生产路线进行调度产品以获得LA的好处,LAS被视为工作室调度问题(JSSP),以最大程度地利用资源利用率,同时遵守约束。这种方法的新颖性是,除了计划产品外,它还考虑了AMR的调度。在当前工作中介绍了解决确定性JSSP的数学公式。使用数学求解器为各种输入求解公式。通常,JSSP是NP硬性问题。随后,已经构建了基于元启发式的遗传算法(GA)来解决JSSP。比较了通过GA和数学求解器获得的解决方案,发现GA在计算和优化效率方面的性能很好。
摘要 — 为了快速自动诊断神经疾病,需要从体积磁共振成像 (MRI) 中计算机辅助检测脑损伤。模板匹配技术可以为脑损伤的自动定位提供满意的结果;然而,找到使模板和损伤相似度最大化的最佳模板大小仍然具有挑战性。这增加了算法的复杂性和对计算资源的要求,同时使用了三维 (3D) 模板处理大型 MRI 体积。因此,需要降低模板匹配的计算复杂度。在本文中,我们首先提出了一个数学框架,用于计算归一化互相关系数 (NCCC) 作为 MRI 体积和近似 3D 高斯模板之间的相似性度量,具有线性时间复杂度,而不是传统的基于快速傅里叶变换 (FFT) 的方法,其复杂度为,其中是图像中的体素数,是尝试的模板半径的数量。然后,我们提出一个数学公式来分析估计图像中每个体素的最佳模板半径,并计算具有位置相关最佳半径的 NCCC,从而将复杂度降低到。我们在一个合成和两个真实的多发性硬化症数据库上测试了我们的方法,并将其在病变检测中的性能与 FFT 和最先进的病变预测算法进行了比较。我们通过实验证明了所提出的方法在脑病变检测中的效率及其与现有技术相当的性能。索引术语 – 脑病变检测、计算复杂度、FFT、MRI、NCCC、模板匹配。
摘要 — 为了快速自动诊断神经疾病,需要从体积磁共振成像 (MRI) 中计算机辅助检测脑损伤。模板匹配技术可以为脑损伤的自动定位提供满意的结果;然而,找到使模板和损伤相似度最大化的最佳模板大小仍然具有挑战性。这增加了算法的复杂性和对计算资源的要求,同时使用了三维 (3D) 模板处理大型 MRI 体积。因此,需要降低模板匹配的计算复杂度。在本文中,我们首先提出了一个数学框架,用于计算归一化互相关系数 (NCCC) 作为 MRI 体积和近似 3D 高斯模板之间的相似性度量,具有线性时间复杂度,而不是传统的基于快速傅里叶变换 (FFT) 的方法,其复杂度为,其中是图像中的体素数,是尝试的模板半径的数量。然后,我们提出一个数学公式来分析估计图像中每个体素的最佳模板半径,并计算具有位置相关最佳半径的 NCCC,从而将复杂度降低到。我们在一个合成和两个真实的多发性硬化症数据库上测试了我们的方法,并将其在病变检测中的性能与 FFT 和最先进的病变预测算法进行了比较。我们通过实验证明了所提出的方法在脑病变检测中的效率及其与现有技术相当的性能。索引术语 – 脑病变检测、计算复杂度、FFT、MRI、NCCC、模板匹配。
■词汇表1)基因组选择(GS):一种基于有关DNA差异的信息来预测和选择个人遗传能力的方法。关于DNA和果实特征差异的数据,使用大量品种和菌株作为训练数据对两者之间的关系进行建模,并且基于“基因组预测(GP)模型”预测个体的遗传能力。可以预测未来在发芽阶段可以实现的水果的特征。注2)全基因组关联研究(GWAS):一种使用数学公式来建模DNA与果实特征的差异与大量品种和菌株中的果实特征之间的关系,并在统计学上检测到果实特征和相关DNA的差异。一旦揭示了与果实性状相关的DNA差异,可以通过寻找DNA差异的附近来识别控制果实性状的候选基因。注意3)下一代序列:可以一次解码大量DNA序列的设备。注4)单核苷酸多态性(SNP):DNA是一种称为脱氧核糖核酸的物质,由四种类型的碱基组成:腺嘌呤(a),胸腺胺(T),鸟嘌呤(G)和细胞儿童(C)。品种之间的碱基差异称为单核苷酸多态性。注5)Infinium系统:Illumina Co.,Ltd.提供的单个核苷酸多态性检测系统。注6)GRAS-DI(由随机扩增子测序 - 主测序引导的基因分型)系统:一种由丰田汽车公司开发的单核苷酸多态性检测系统。 ■研究项目这项研究是在以下项目的支持下进行的: