3.1 简介.................... ... . .................................................................................... 3-1 3.1.2 范围. .................................................................................................................... .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. .................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
3.1 简介.................... ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3-3
透明、政治中立,并在整个河流流域保持一致,即使是尼罗河和恒河等大型流域也是如此。虽然某些卫星数据集已处理为第一级反射率、发射率和后向散射系数,但其他数据集甚至将提供第二级产品,可直接用于水资源规划目的(例如土地覆盖、土壤湿度和降雨)。蒸散量 (ET) 15
透明、政治中立且在整个河流流域保持一致,即使对于尼罗河和恒河等大型流域也是如此。虽然某些卫星数据集已处理为第一级反射率、发射率和后向散射系数,但其他数据集甚至将提供可直接用于水资源规划目的(例如土地覆盖、土壤湿度和降雨)的第二级产品。蒸散量 (ET) 15
1 澳大利亚莫纳什大学地理与环境科学学院 GIS 中心,Clayton VIC 3800,澳大利亚 2 澳大利亚可持续集水区中心和南昆士兰大学工程与测量学院 Toowoomba QLD 4350,澳大利亚 电子邮件:xiaoye.liu@usq.edu.au 摘要 机载 LiDAR 已成为广泛应用中数字高程数据采集的首选技术。相对于指定垂直基准的垂直精度是指定 LiDAR 高程数据质量的主要标准。LiDAR 高程数据的定量评估通常通过将高精度检查点与从 LiDAR 地面数据估计的高程进行比较来进行。然而,通过现场测量收集足够数量的检查点是一项耗时的任务。本研究使用测量标记评估农村地区不同土地覆盖的 LiDAR 数据的垂直精度,并探索从与检查点位置相对应的 LiDAR 数据中获取高程的不同方法的性能。使用频率直方图和分位数-分位数图对 LiDAR 数据和检查点之间的垂直差异进行了正态性检验,因此可以使用适当的测量方法(公式 1.96 × RMSE 或 95 百分位数)来评估不同土地覆盖的 LiDAR 数据的垂直精度。结果证明了使用测量标记作为检查点来评估 LiDAR 数据垂直精度的适用性。关键词:LiDAR、机载激光扫描、数字高程模型、测量标记、精度评估 引言 机载光探测和测距 (LiDAR),也称为机载激光扫描 (ALS),是最有效的地形数据收集手段之一。使用 LiDAR 数据生成数字高程模型 (DEM) 正在成为空间科学界的标准做法 [10]。LiDAR 输出的一个吸引人的特点是点的三维坐标的高密度和高精度,其特点是垂直精度为 10-50 厘米 RMSE(均方根误差)在 68% 置信水平下(或 19.6-98 厘米在 95% 置信水平下),水平点间距为 1-3 米 [13]。只有在最理想的情况下才能实现 10-15 厘米 RMSE(置信度为 68%)的更高垂直精度 [ 10 ]。LiDAR 数据质量评估方法也因应用和 LiDAR 数据的交付格式而异。项目中 LiDAR 高程数据的实际精度取决于飞行高度、激光束发散度、扫描带内反射点的位置、LiDAR 系统误差(包括全球定位系统 (GPS) 和惯性测量单元 (IMU) 的误差)、与 GPS 地面基站的距离以及 LiDAR 数据分类(过滤)可靠性 [10]、[27]。对于使用分类的 LiDAR 点云生成的 DEM,相对于指定垂直基准的垂直精度是指定 LiDAR 高程数据质量的主要标准 [19]。LiDAR 高程数据的定量评估通常通过将高精度检查点与从 LiDAR 估计的高程进行比较来进行
摘要 遥感数据得出的土地覆盖分类的精度评估已被认为是判断这些数据是否适用于特定应用的宝贵工具。空间数据精度领域的最新研究举措以及遥感数据在地理信息系统中的集成重新引发了对精度评估的讨论。本文通过基于位置精度和主题精度划分的评论来促进这一讨论。一个重要的观察结果是,评估数据精度的方法数量有限。然而,应用的定义因作者而异,特别是在主题精度的评估方面。准确度评估通常产生一个单一的测量值,例如均方根误差或正确分类的像素比例。这些单一测量值没有提供足够的信息,并且它们可能基于统计或方法论上无效的方法。因此,不应明确报告单个测量值以及评估这些测量值的整个过程。
提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。定义了动态适应性函数,以获得最小的电路复杂性和最高的观点数据精度,从而确保所提出的技术是可以推广且健壮的。同时,它通过惩罚其外观和门数来最大程度地减少生成电路的复杂性。通过使用二维降低方法来减少图像的大小:主成分分析(PCA),该方法在个人内部编码并由系统进行了遗传优化,以及一个小的卷积自动编码器(CAE)。这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
对内存需求的显着影响,导致需要更少的硬件,因为该模型可以挤压成较少的GPU,这是提高能量效率的最具影响力的方法之一。●硬件:专用AI硬件(例如GPU或TPU)可以加速培训和推理。通用硬件(例如CPU)可以具有更大的灵活性,但在处理机器学习工作负载方面通常会很慢。在选择硬件时,应仔细考虑使用硬件,诸如内存能力,处理能力和对不同数据精度格式的支持。这是一个双层单词:虽然它建议了某些模型和功能优化某些硬件的机会,但它可能意味着尝试在其他硬件上运行模型或流程,例如,因为最佳硬件不可用或过于昂贵,导致效率降低。,45 46
摘要:数字孪生流域是物理流域的虚拟表示,具有同步仿真、虚实交互和迭代优化等特点。数字孪生流域的构建需要具有大范围覆盖、高精度、高分辨率、低延迟等特点的流域数据库。遥感技术的进步为获取流域要素变量提供了新的技术手段。本文对遥感技术在降水、地表温度、蒸散、水位、河流流量、土壤湿度和植被七大要素变量的检索原理、数据现状、评估与比对、优势与挑战、应用和前景进行了全面的概述和讨论。指出遥感可以应用于数字孪生流域的一些功能,如干旱监测、降水预报和水资源管理。但还需要通过数据合并、数据同化、偏差校正、机器学习算法、多传感器联合检索等手段,进一步提高数据精度、时空分辨率、时延等。本文将有助于推进遥感技术在数字孪生流域建设中的应用。
a 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079,中国 WG I/2 - SAR和LiDAR系统 关键词:LiDAR,质量控制,精度分析,条带调整 摘要:使用LiDAR快速获取数据是生成密集精确DEM的一种方法。与标准数码相机记录的图像不同,LiDAR记录的点没有规则的分布。与传统摄影测量相比,质量和真实分辨率可能有所不同。因此,在机载LiDAR应用中,LiDAR数据的精度是模棱两可的。实际上,LiDAR质量控制是用于验证数据质量的重要后期处理。本研究的目的是通过分析LiDAR数据特点和机载LiDAR数据处理流程,研究LiDAR数据精度评估方法,明确质量标准,研究精度评估方法,提出LiDAR数据处理的工作流程。1.引言