需要牢记的主要事项是:• 不受监管的流量或体积数据通常应用于频率分析。使用受监管的数据可能会高估或低估风险。• 评估上游监管是否对数据有明显影响非常重要。• 当监管影响显著时,应开发不受监管的数据集。• 监管会随着时间而变化。• 数据需要同质,这意味着我们不应该将具有显著监管影响的记录与不受监管的数据记录相结合。• 与往常一样,需要进行工程判断
简介 诊断成像数据集 (DID) 是一个月度数据收集,涵盖了英格兰 NHS 患者的诊断成像测试数据。它包括全科医生直接使用癌症关键诊断测试的估计值,例如胸部成像、非产科超声和脑部 MRI。引入 DID 是为了监测“改善结果:癌症战略 1 ”的进展情况。该战略阐述了政府、NHS 和公众如何帮助预防癌症、提高癌症服务的质量和效率,并朝着实现与最佳结果相媲美的方向迈进。其中一个方面是确保全科医生能够获得正确的诊断测试,以帮助他们更早地诊断或排除癌症。因此,DID 报告了成像活动、转诊来源和及时性。这些数据是从放射信息系统 (RIS) 中整理出来的,放射信息系统是用于管理放射科工作流程的医院管理系统,并上传到 NHS Digital 维护的数据库中。 1.1 常用首字母缩略词
简介 诊断成像数据集 (DID) 是一个月度数据收集,涵盖了英格兰 NHS 患者的诊断成像测试数据。它包括全科医生直接使用癌症关键诊断测试的估计值,例如胸部成像、非产科超声和脑部 MRI。引入 DID 是为了监测“改善结果:癌症战略 1 ”的进展情况。该战略阐述了政府、NHS 和公众如何帮助预防癌症、提高癌症服务的质量和效率,并朝着实现与最佳结果相媲美的方向迈进。其中一个方面是确保全科医生能够获得正确的诊断测试,以帮助他们更早地诊断或排除癌症。因此,DID 报告了成像活动、转诊来源和及时性。这些数据是从放射信息系统 (RIS) 中整理出来的,放射信息系统是用于管理放射科工作流程的医院管理系统,并上传到 NHS Digital 维护的数据库中。 1.1 常用首字母缩略词
在安全关键型飞机领域,在着陆进近期间实施用于跑道检测的物体检测方法受到限制。这种限制是由于验证设计和理解物体检测在操作过程中的行为方式的能力所带来的困难。在操作过程中,物体检测需要考虑飞机的位置、环境因素、不同的跑道和飞机姿态。训练这样的物体检测模型需要一个定义上述特征的综合数据集。需要分析特征对检测能力的影响,以确保数据集中图像的正确分布。收集这些场景的图像成本高昂,而且是航空业安全标准的必需要求。合成数据可用于限制创建包含所有特征的数据集所需的成本和时间。通过在模拟环境中生成数据集的形式使用合成数据,这些特征可以直接应用于数据集。这些特征也可以在不同的数据集中单独实现,并相互比较,以分析它们对物体检测能力的影响。利用该方法实现上述功能,可以确定以下结果。为了使物体检测考虑大多数着陆情况和不同的跑道,数据集需要复制真实飞行数据并生成额外的极端着陆情况。数据
I. 引言 海上监视是许多国家的重要活动。它对于确保海洋运输和贸易的安全使用至关重要。它允许控制渔业,以保证资源和生态系统的保护。海上监视还可以确保环境法规得到实施,防止石油泄漏和舱底倾倒,这些会对动植物群和沿海人口造成严重影响。尽管是一项重要活动,但至今仍是一项艰巨的任务。它意味着通常以互补的方式使用船舶、飞机和卫星。所有这些平台都有各自的局限性,因此需要额外的技术。在过去十年中,无人机 (UAV) 不仅在部署方面而且在能力方面都有了巨大的增长。目前,无人机提供了有前途的技术来协助遥感和海洋监视。虽然传统飞机配备了重型雷达,但无人机通常只配备轻型无源电光传感器。在传统飞机中,机组人员会分析收集到的数据,而在无人机中,系统需要额外的智能。额外的智能用于取代机上的人员,或至少帮助地面上的操作员。随着计算机视觉和其他领域的发展,已经开发出几种方法来提高处理能力。
简介 诊断成像数据集 (DID) 是一个月度数据收集,涵盖了英格兰 NHS 患者的诊断成像测试数据。它包括全科医生直接使用癌症关键诊断测试的估计值,例如胸部成像、非产科超声和脑 MRI。引入 DID 是为了监测“改善结果:癌症战略 1 ”的进展情况。该战略阐述了政府、NHS 和公众如何帮助预防癌症、提高癌症服务的质量和效率,并朝着实现与最佳结果相媲美的结果迈进。其中一个方面是确保全科医生能够获得正确的诊断测试,以帮助他们更早地诊断或排除癌症。因此,DID 报告成像活动、转诊来源和及时性。这些数据是从放射信息系统 (RIS) 整理而来的,放射信息系统是用于管理放射科工作流程的医院管理系统,并上传到 NHS Digital 维护的数据库中。 1.1 常用首字母缩略词
在建筑环境中的导航,例如驾驶,循环和步行,是跨越驾驶和人类机器人相互作用的关键领域。能够在结构化环境中运行的自主剂的驱动是一个公认的领域,根部延伸到控制理论和机器人技术的早期。在运输的背景下,研究人员在结构化环境中进行了广泛研究的导航,例如自由流高速公路和信号的城市街道。但是,与结构化道路的导航相比,由于缺乏经验数据和问题的复杂性,在没有明确定义的通行权法规的道路上(没有明确定义的通行权法规的道路)进行了相比。理解不良导航的第一种基本要素是经验数据。为此,相机视频特别有效,因为1)他们以相对较低的成本捕获了在道路上的丰富动态,2)它们允许通过直接检查进行Quantative评估,3)3)它们可以通过现代计算机视觉实现定性分析。尽管过去进行了广泛的研究,但大多数现有的视频数据集仅着眼于结构化环境中的驾驶行为。在未建筑的道路环境中的行为,例如经常合并和未信号交叉点的拥挤的高速公路,很少受到调查。这个问题的数据稀缺无疑阻碍了对这种环境中导航的理解。为了弥合经验数据中的这一差距,我们提出了伯克利deepdrive无人机(B3D)数据集。这个谈判这个惯性框架的数据集记录了在未结构化的道路环境中驾驶行为的丰富动态,包括未信号的十字路口,未信号的回旋处,带有煤矿的高速公路,带停下来的高速公路,带有停车场的高速公路,以及与合并瓶颈的高速公路,据我们所知,这是迄今为止第一个广泛涵盖未结构化驾驶行为的无人机数据集。难题的另一部分是合适的建模范式。自动驾驶汽车中的常规控制和规划结构由从上到下的四层抽象组成:1)路由,2)行为决策,3)运动计划,以及4)车辆控制[14]。尤其是在第二个行为层中,经常采用预测模式来预测周围车辆的运动,然后在该动作计划范围内计划避免碰撞。在结构化环境中,这种经典的预测范式虽然有效地驾驶,但在未结构化的道路环境中不足。例如,在一个未信号的十字路口,驾驶员动态地谈判通行权:当两辆冲突的车辆在相似的时间接近交叉点时,一个被认为更为aggressive的人通常会“赢得”通行的优先级。
Jhunjhunu,印度拉贾斯坦邦,摘要本文讨论了用于椰子植物监测的自动化疾病检测系统的发展,重点是多个机器学习技术的整合,实时检测能力,可伸缩性和适应性学习。深度学习模型,尤其是卷积神经网络(CNN),可以自主获得与疾病症状相关的图像特性。选择适当的体系结构,例如Resnet,VGG-16或EfficityNet,促进了数据中复杂模式的捕获。该研究研究了使用高分辨率图像与深度学习方法结合使用的高分辨率图像来识别和评估椰子树健康的可行性。Resnet-50模型在检测和健康分类任务中的表现优于VGG-16体系结构,表明大多数受影响的椰子树具有Ganoderma感染和钾不足。提出的方法显示了泰国椰子树管理的潜力,从而可以更有效地使用工人,而在现场花费的时间更少。为了最大程度地提高模型性能,未来的研究应旨在增加数据集的数量和多样性,包括各种视觉属性。为了更好地对健康问题进行分类,未来的研究可能会使用多光谱摄像头。通过将监督,无监督和半监督的学习方法结合起来,可以根据椰子植物监测和更广泛的应用来量身定制该系统。关键字:椰子叶,Resnet,VGG-16和CNN。
螺丝包装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4个backercelldata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 5 Bachmarydata。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 Baronpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 Bhaduri Organosata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 BuzzersCdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 BunishSpcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 CampbellbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 Chenbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 countrccmolecules。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 Darmanisbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 erccspikeinconenentations。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 Ernstsermatogenessdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17提取。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 Gilaihdihscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 Grunthscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 Grunpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 Heoriangataladata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 Hermann Schatatogenesisdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 Hucortexdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 Jessabraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 Kolodziejczykescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 Kotliarovpbmcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 Lamannobraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 Lawlorpancreasdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 Ledergormyelomadata。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 35 lengescdata。 。 。 。 。 。 。 。 。 。 。 。 。34 Ledergormyelomadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 lengescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36个列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37个列表路径。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38个列表。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 lunspikeisa。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 MacOS Recordinadata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41 mairpbmcda。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 MarquesbrainData。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 Messmerescdata。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4442 MarquesbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 Messmerescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44
4卫生与康复系,瑞典哥德堡大学Sahlgrenska Academy神经科学与生理学研究所物理治疗部门。 哥德堡大学以人为中心的护理中心(GPCC),Sahlgrenska Academy,哥德堡大学,哥德堡大学,瑞典4卫生与康复系,瑞典哥德堡大学Sahlgrenska Academy神经科学与生理学研究所物理治疗部门。哥德堡大学以人为中心的护理中心(GPCC),Sahlgrenska Academy,哥德堡大学,哥德堡大学,瑞典