无缝连接和联网 现场总线和 PLC 兼容性允许连接到网络中的其他设备,以实现实时通信和控制。也可以通过计算机或手持设备进行直接控制。支持各种现场总线协议可确保最大的灵活性。支持 Profibus、以太网/IP、ProfiNet 和 EtherCAT 协议(可选)。
• 通过“创新之旅”获得实践经验,探索新的商业理念并开发投资组合图来可视化和分析正在探索的新理念。 • 通过识别和定义将 ESG/可持续性因素融入商业战略的机会来培养分析和批判性思维技能。 • 获得沟通 ESG 或可持续性机会如何创造价值的经验。 课程软件 Canvas – 学习管理系统 Slack – 消息应用程序 学生应注册 Slack 帐户并加入 esm231w25 工作区。请参阅 Canvas 以获取邀请链接。 必读内容 哈佛商业出版 Coursepack 案例列在下面的时间表中。请参阅哈佛商业出版网站上题为“通过环境解决方案创造价值 (ESM 231, W25)”的课程:https://hbsp.harvard.edu/import/1249469
可以得出一些结论,也出现了一些问题,因此我们需要共同努力,在 130 多年的经验基础上,为奥林匹克运动的未来制定愿景。首先,在预算飙升的背景下,申办奥运会的数量一直在减少,但在通过 2020 年议程和“新规范”后,申办奥运会的数量有所回升。提前很久就选定夏季和冬季奥运会的主办城市是正确的举措,因为它使国际奥委会和奥林匹克运动成员免于立即做出决定,并为就奥运会及其利益相关者的未来进行冷静辩论创造了适当的条件。我很高兴看到有众多国家竞相竞标举办 2036 年甚至 2040 年奥运会。但我也很高兴听到,在国际奥委会倡导的新理念下,2024 年巴黎奥运会举办后,近 82% 的法国人认为举办 2024 年巴黎奥运会对他们的国家有利。
大跨度预应力钢结构运维阶段是全寿命周期的核心环节。目前,对运维全过程安全风险变化规律的研究较少,尤其是如何有效利用运维阶段丰富的监测数据和相关安全风险信息,对结构运维全过程安全风险变化规律进行分析预测的研究,对预应力钢结构运维安全状态的判断和控制决策效率产生影响。以轮辐式索桁架为例,提出将数字孪生模型(DTM)与钢结构运维安全相结合的新理念。通过现实物理空间维度与数字虚拟空间维度的结合,基于假设的分析模型。以上提出了理论框架,并从大数据的角度对某预应力钢结构进行了案例分析,评估了该方法在预应力损失及不均匀雨雪荷载工况下应用的可行性。该方法可为运维管理提供指导,及时制定策略。
结构与基础设施系统的可靠性、风险和弹性一直是财产和生命安全以及人类社会可持续发展关注的主要问题。一方面,近年来地震、热带气旋、洪水和工业事故等自然和人为灾害的频率和强度不断增加,另一方面,结构与基础设施系统的规模和复杂性不断增加,多领域和系统内及系统间的耦合作用不断增强,对结构与基础设施系统性能的要求不断提高,这些问题仍然是关键挑战。与这些灾害相关的不确定性的量化和传播、风险下的性能评估和决策以及结构与基础设施系统的精细化分析和控制是解决这些挑战性问题的关键工具。它们激发了土木工程、机械工程、水利工程、海洋工程和航空航天工程等各个领域的结构安全性和可靠性领域的前沿研究课题。特别是近十年来,受大数据、超级计算和人工智能以及力学、数学、材料和相关多学科融合的新进展的启发,结构安全性和可靠性领域出现了许多新思想、新观点、新理念和新方法。
结构与基础设施系统的可靠性、风险和弹性一直是财产和生命安全以及人类社会可持续发展关注的主要问题。一方面,近年来地震、热带气旋、洪水和工业事故等自然和人为灾害的频率和强度不断增加,另一方面,结构与基础设施系统的规模和复杂性不断增加,多领域和系统内及系统间的耦合作用不断增强,对结构与基础设施系统性能的要求不断提高,这些问题仍然是关键挑战。与这些灾害相关的不确定性的量化和传播、风险下的性能评估和决策以及结构与基础设施系统的精细化分析和控制是解决这些挑战性问题的关键工具。它们激发了土木工程、机械工程、水利工程、海洋工程和航空航天工程等各个领域的结构安全性和可靠性领域的前沿研究课题。特别是近十年来,受大数据、超级计算和人工智能以及力学、数学、材料和相关多学科融合的新进展的启发,结构安全性和可靠性领域出现了许多新思想、新观点、新理念和新方法。
结构与基础设施系统的可靠性、风险和弹性一直是财产和生命安全以及人类社会可持续发展关注的主要问题。一方面,近年来地震、热带气旋、洪水和工业事故等自然和人为灾害的频率和强度不断增加,另一方面,结构与基础设施系统的规模和复杂性不断增加,多领域和系统内及系统间耦合效应不断增强,对结构与基础设施系统的性能要求不断提高,因此,它们仍然是关键挑战。这些灾害相关的不确定性的量化和传播、风险下的性能评估和决策以及结构与基础设施系统的精细化分析和控制是解决这些挑战性问题的关键工具。它们激发了土木工程、机械工程、水利工程、海洋工程、航空航天工程等各个领域的结构安全性和可靠性领域的前沿研究课题。特别是近十年来,在大数据、超级计算和人工智能以及力学、数学、材料和相关多学科融合的新进展的启发下,结构安全性和可靠性领域出现了许多新思想、新观点、新理念和新方法。
结构与基础设施系统的可靠性、风险和弹性一直是财产和生命安全以及人类社会可持续发展关注的主要问题。一方面,近年来地震、热带气旋、洪水和工业事故等自然和人为灾害的频率和强度不断增加,另一方面,结构与基础设施系统的规模和复杂性不断增加,多领域和系统内及系统间耦合效应不断增强,对结构与基础设施系统的性能要求不断提高,因此,它们仍然是关键挑战。这些灾害相关的不确定性的量化和传播、风险下的性能评估和决策以及结构与基础设施系统的精细化分析和控制是解决这些挑战性问题的关键工具。它们激发了土木工程、机械工程、水利工程、海洋工程、航空航天工程等各个领域的结构安全性和可靠性领域的前沿研究课题。特别是近十年来,在大数据、超级计算和人工智能以及力学、数学、材料和相关多学科融合的新进展的启发下,结构安全性和可靠性领域出现了许多新思想、新观点、新理念和新方法。
结构与基础设施系统的可靠性、风险和弹性一直是财产和生命安全以及人类社会可持续发展关注的主要问题。一方面,近年来地震、热带气旋、洪水和工业事故等自然和人为灾害的频率和强度不断增加,另一方面,结构与基础设施系统的规模和复杂性不断增加,多领域和系统内及系统间的耦合作用不断增强,对结构与基础设施系统性能的要求不断提高,这些问题仍然是关键挑战。与这些灾害相关的不确定性的量化和传播、风险下的性能评估和决策以及结构与基础设施系统的精细化分析和控制是解决这些挑战性问题的关键工具。它们激发了土木工程、机械工程、水利工程、海洋工程和航空航天工程等各个领域的结构安全性和可靠性领域的前沿研究课题。特别是近十年来,受大数据、超级计算和人工智能以及力学、数学、材料和相关多学科融合的新进展的启发,结构安全性和可靠性领域出现了许多新思想、新观点、新理念和新方法。
大跨度预应力钢结构运维阶段是全寿命周期的核心环节,目前针对运维全过程安全风险变化规律的研究较少,尤其是如何有效利用运维阶段丰富的监测数据及相关安全风险信息,对结构运维全过程安全风险变化规律进行分析预测的研究,对预应力钢结构运维安全状态的判断与控制决策效率产生影响。以轮辐式索桁架为例,提出将数字孪生模型(DTM)与钢结构运维安全融合的新理念,通过现实物理空间维度与数字虚拟空间维度相结合,基于假设的分析模型,对钢结构运维安全进行综合评价。以上提出了理论框架,并从大数据的角度对某预应力钢结构进行了案例分析,评估了该方法在预应力损失及不均匀雨雪荷载工况下应用的可行性,可为运维管理提供指导并及时制定策略。