步骤 1:确定土壤类型 - USDA 网络土壤调查步骤 2:土壤测试 – 确定哪些养分已经存在以及哪些需要添加。测试实验室。步骤 3:作物需求 – 了解作物的具体养分需求。UCCE 为大多数作物提供施肥指南。步骤 4:肥料选择 – 根据养分缺乏情况和作物需求选择合适的肥料类型。UCCE 会根据您的信息提供施肥建议。步骤 5。施用率:确定施用多少肥料。UCCE 有基于多年研究的指南。步骤 6:施用时间 – 安排施用时间以配合作物的关键生长阶段。UCCE 可协助确定何时施用。步骤 7:监测和调整 – 定期评估作物表现和土壤健康状况,以根据需要调整计划。
对可可幼苗在苗圃阶段施肥的意义理解不足是可可作物产量和盈利能力的一个重大问题,因为它会对可可产量产生负面影响。因此,制定适当的施肥计划至关重要,另一方面要补充提取的养分并保持土壤健康。本研究旨在评估不同剂量的 N、P、K、Ca 和 Mg 肥料对苗圃条件下可可 (Theobroma cacao L.) 幼苗 (FEAR-5) 生长发育的影响。采用完全随机设计,有五种处理和三次重复。根据可可幼苗(2 至 6 个月大)的施肥建议确定处理方法(即 N 2.4g、P 0.6g、K 2.4g、Ca 2.3g 和 Mg 1.1g),据此我们根据土壤分析得出了五种处理方法:处理方法:T1= 建议施肥,T2= 根据土壤分析
电子邮件:jorge.aguilera@uems.br orcid:https://orcid.org/0000-0000-0002-7308-0967抽象的西瓜作物需要营养和水,这是限制其发展的因素。实验的目的是评估西瓜的产生,这是土壤溶液的电导率的函数。实验中使用的实验设计是一种具有四个复制的随机块设计。第一个因素包括土壤溶液(0.6、1.2、1.8、2.4、3.0和3.6 ds m -1)的六个水平的电导率,第二个因子包括两个种植时间:E1-Autumn和E2-Spring。评估的特征是水果长度(FL)和直径(FD),果实质量(FM),果肉pH(FPPH),果皮厚度(FPT),土壤电导率(SEC),果实果肉brix(FPB),可滴定酸度(FPA)和FPB/FPA的效果(FPB/FPA)的效果(FPA)的效果(FPA)的效果(FPA)效应(FPA)的果实(FPA)数量(flu)数量(T)数量(T)数量(T)。西瓜水果的生产力(CP)。变量FL,FD和FPB/FPA仅受植物季节的影响,分别为44%,16%和49%的变量,E2更好。但是,这两个因素的TP和CP都显着差异。e2显示了
研究人员正在尝试做似乎不可能的事情,即使不是不可能的事情:将豆类中的氮的能力转移到包括谷物在内的更广泛的农作物中。,尽管不需要任何或更少额外施肥的谷物作物的现实至少在商业上至少要有10 - 20年的历史,但过去二十年的研究表明,这不仅仅是它不仅仅是一个幻想的梦想。自2013年以来的大部分研究都是通过一个跨国项目,由Aarhus University的Simona Radutoiu教授领导的农业营养共生(ENSA)。该项目的主要目的是目前由Bill和Melinda Gates农业创新提供资金,是为了使全球农业更具可持续性和公平性。
摘要。人机集成可以充分利用人工智能来实现社会技术灵活性。本文提出了一种结合人机智能的系统方法,该方法基于从刚性自动化到灵活自主的转变。它强调了各种问题,包括成熟度、生命关键系统(不仅考虑认知,还考虑物理特性)、作为人和机器的代表的系统,以及考虑专业知识和经验的必要性。它对系统概念进行了更深层次的定义,即系统作为系统的系统,由系统网络表示,其中功能网络可以动态地分配到结构结构上。介绍了 TOP 模型(技术、组织和人员)。介绍了人机功能分配的三个双重设计和操作过程:替代/自动化;放大/交互;推测/放大。介绍了三种导致人和机器功能分配的操作过程:导致人员自动化的程序遵循;由机器自动化导致的自动化监控;以及涉及日益自主的人与机器协调的问题解决。这正是人工智能可以通过提供工具来增强人们解决问题的能力而变得高效和有效的地方。整体方法被称为“FlexTech”。
作者:Naoki Kubo*,Ryuji Uehara,Shuhei Uemura,Hiroaki Ohishi,Kenjiro Shirane和Hiroyuki
摘要 本报告探讨了生物肥料作为印度化学肥料可持续替代品的潜力,重点关注其在促进气候适应型农业方面的作用。从历史上看,化学肥料推动了印度农业部门的增长,尤其是在绿色革命之后。然而,化学肥料的广泛使用导致了环境恶化、土壤肥力下降以及由于土壤和水中化学物质积聚而导致的健康风险。认识到这些问题后,印度政府出台了 PM-PRANAM Yojana 等政策,旨在促进生物肥料的使用,减少对化学品进口的依赖,并减轻补贴负担。生物肥料由有益微生物组成,通过改善土壤养分含量和作物产量而没有有害的副作用,提供了一种可持续的解决方案。本报告应用回归分析来预测未来的作物产量,结果表明,到 2064 年,生物肥料在有效性和采用率方面可能会超过化学肥料,这与印度的农业可持续发展目标相一致。最终,本研究提倡更多地采用生物肥料,以确保长期粮食生产,改善土壤健康,并支持印度向可持续农业实践的过渡。 简介 根据 OEC 的数据,印度是世界上最大的化肥进口国之一,其次是巴西、美国和中国,2021 年进口的化肥总额为 80 亿美元。印度每公顷平均施肥量约为 145 公斤,受西孟加拉邦等邦的影响,西孟加拉邦的消费量为 122 公斤/公顷,哈里亚纳邦为 167 公斤/公顷,旁遮普邦为 184 公斤/公顷,北方邦和北阿坎德邦为 127 公斤/公顷,安得拉邦为 138 公斤/公顷,泰米尔纳德邦为 112 公斤/公顷,其余各邦每公顷消费量低于总体平均水平 145 公斤/公顷(Arvind K. Shukla 等人,2022 年)。长期过量使用化肥和粪肥可能会导致重金属在土壤和植物中积聚,并导致重金属含量过高,因为这些重金属会在土壤中积累,然后在植物和动物体内生物累积。尿素的过量使用也是一个令人担忧的问题,因为据报道,这会导致印度与硝酸盐有关的地下水污染加剧。另一个令人担忧的是,磷肥通过地表水流运输,可能会增加饮用水和河流中的磷酸盐含量(Arvind K. Shukla 等人,2022 年)。除了这些有害影响之外,化肥也没有发挥应有的作用。化肥在绿色革命期间和之后给印度农业生态系统带来的促进作用至今尚未持续。相对于所用化肥,粮食产量的增长有所下降。 20 世纪 60 年代施用 1 公斤氮、磷、钾 (NPK) 可产 12 公斤作物,现在减产至仅 5 公斤。同样,氮利用效率(NUE)从20世纪60年代中期的48%下降到2018年的35%。
使用人尿作为农作物肥料,由于其潜在的好处引起了兴趣,但其应用对尿液如何影响土壤功能和微生物群落有所了解。本研究旨在阐明土壤细菌群落对用人尿液施肥的反应。为此,菠菜作物被2种不同剂量的分离和储存的人类尿液(170 kg n ha-1 + 8.5 kg p ha-1和510 kg n ha-1 + 25.5 kg p ha-1),并与合成受肥(170 kg n ha-h ha-8.5 ka + p ha-5 k p ha-5 k p ha-1)相比根据随机块方案,在温室条件下在四个土壤罐中进行了实验。我们在开始时和土壤和植物特性的开始时评估了尿液和土壤细菌组成的地位,以了解细菌组成变化中的驱动因素。储存12个月后,尿液具有耗尽的微生物组,但仍然含有很少的尿液或粪便菌株。总体而言,土壤细菌群落对尿液施肥有抵抗力,只有3%的分类单元受到影响。然而,与合成肥料相比,尿液受精的硝化和反硝化基团的相对丰度,这意味着在用尿液施肥时可能会发出更多的n 2 o,而无需发出。尿液的高盐浓度对BAC群落几乎没有明显的影响。在更广泛的背景下,该实验提供了证据表明,一年储存的尿液可以应用于植物土壤系统,而不会在短期内对土壤细菌群落产生负面影响。
ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2024; 8(4):207-212 www.biochemjournal.com收到:14-02-2024接受:16-03-2024 Aniket Aniket Ambadasrao Patil Patil Ph.D。学者,农学系,P.G.I。,博士P.D.K.V.,Akola,Maharashtra,印度,JP Deshmukh博士,AICRP,I.F.S.R.的AICRP,Dr. P.D.K.V.,Akola,Maharashtra,印度Sr Jeevan Sangram M.Sc. 学者,农艺学系,博士 P.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,JP Deshmukh博士,AICRP,I.F.S.R.的AICRP,Dr.P.D.K.V.,Akola,Maharashtra,印度Sr Jeevan Sangram M.Sc. 学者,农艺学系,博士 P.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度Sr Jeevan Sangram M.Sc.学者,农艺学系,博士P.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,YV Ingle博士植物病理学系,P.G.I.,博士P.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士 P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,An Paslawar博士,农学系,P.G.I.,博士P.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士 P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,Akola,Maharashtra,印度,VV Goud P.I.博士,AICRP杂草管理,博士P.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士 P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,印度马哈拉施特拉邦Akola,通讯作者:Aniket Ambadasrao Patil Ph.D.学者,农学系,P.G.I。,博士P.D.K.V.,印度马哈拉施特拉邦AkolaP.D.K.V.,印度马哈拉施特拉邦Akola