广泛的害虫,主要是鳞翅目(毛毛虫),双翅目(蚊子和黑蝇)和鞘翅目(甲虫幼虫)(Sanchis 2011)。bt的特征是在孢子形成过程中生产,内毒素蛋白(称为哭泣的蛋白),这些蛋白会积聚并形成晶体包含体。昆虫必须消耗/摄取这些哭泣的蛋白质,才能感受到其作用,直到昆虫死亡。在摄入后,昆虫中肠内的碱性条件会导致晶体的溶解化,从而将其转化为有毒的核心碎片(Sansinenea 2019)。这些有毒蛋白与位于昆虫中肠上皮细胞上的受体(糖蛋白或糖蛋白)结合(Bravo等人2011)。结合后,毒素会改变其构象,从而使其插入细胞膜并形成阳离子选择通道(Bravo等。2013)。当形成足够的这些通道时,几个阳离子进入了细胞。这会导致细胞内部的渗透不平衡,从而导致中肠上皮完整性的丧失。这使碱性肠道果汁和细菌可以通过中肠地下膜,杀死昆虫。当用作喷雾剂时,这些毒素无效地防止昆虫攻击植物的根或植物的内部部分(Sanahuja等人。2011)。这些局限性引发了人们对开发新的遗传修饰植物和细菌表达哭泣和其他BT-杀虫基因的兴趣,以便提供更有效的毒素递送系统来控制这些昆虫(Azizoglu和Karabörklü2021)。2021; Lazarte等。在生物技术技术(例如基因工程)中的持续进展,具有计算生物学的能力,导致了有关BT的发展和发现。在这种情况下,全球各个研究小组对寻找具有新的抑制活性范围和高水平的毒性毒素的新型哭泣毒素非常感兴趣,这是针对虫害的一种替代品,这种毒性毒性具有更高的抗药性水平(Hou等人 2019; Crickmore等。 2021)。 结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。 2017; Azizoglu等。 2020)。 今天的新一代方法,例如模拟和动态研究,2019; Crickmore等。2021)。结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。2017; Azizoglu等。2020)。今天的新一代方法,例如模拟和动态研究,
目标1:为大豆开发有效的无PAM无PAM CAS9和主要的编辑平台。这是一个基因编辑工具开发目标,它基于我们先前开发的CRISPR-CAS9基因编辑平台。为大豆建造主要的编辑系统。基于SPCAS9 Nickase的两个不同变体和M-MLV的逆转录酶,已经为大豆毛的根和稳定的转化和基因组编辑制作了三个主要的编辑系统。分别使用命名为PE1,PE2和PE3的三个系统,以制造针对编码CDPK47,CDPK48,CDPK49和CDPK50的大豆基因的主要编辑构建体。PE1和PE2系统,以确定哪种最适合于创建精确的遗传变化,以改善大豆的性状。不幸的是,这两个系统无效地在毛状根中的四个CDPK基因中创建突变。因此,我们决定使用PE2系统测试其他基因FAD2和EPSP,并且再次没有发现靶基因已修改的证据。第三个Prime编辑版本,名为PE3,还测试了在毛状根部编辑FAD2和EPSP基因的能力,这也没有成功。PE1,PE2和PE3 PRIME编辑构建体在大豆中似乎不起作用,因此我们正在采用替代方法来修改向量,以使用不同的策略来生成Prime编辑指南RNA。这些结构将在下一个报告期间进行测试。总而言之,使用在其他工厂中使用的策略,在大豆中的主要编辑应用并不能有效。1。我们继续努力确定将在大豆中有效的主要编辑策略。目标2:应用基础编辑和主要编辑来修改影响大豆对干旱反应的基因。我们设计了两种不同的CRISPR-Cas9构建体来敲除CDPK基因的功能,这些功能被预测会影响大豆对干旱的反应。基于CRISPR-CAS9的基因敲除大豆CDPK家族基因(CDPK47、48、49和50)的两个CRISPR构建体(NK44和NK46)已建立,以敲除CDPK基因的两种组合。a。 NK44:PATEC-INCAS9-GCDPK49-50(靶向CDPK49和CDPK50)b。 NK46:PATEC-INCAS9-GCDPK47-50(靶向CDPK47,CDPK48,CDPK49和CDPK50)对这两种构建体进行了大豆转化,并为转染料的存在而基因型进行了基因型。我们为NK44构建体获得了四个转基因阳性植物。我们总共获得了NK46构建体的七个转基因阳性植物。种子,我们将这些种子称为T1代。至少为每条线发芽了至少24个T1幼苗,我们进行了PCR首先确定NK44或NK46构建体是遗传的,我们
在宿主植物中传播病毒感染包括两个分离和顺序的阶段:从最初感染的细胞转移到相邻的邻近细胞中,这是一种称为局部或细胞间移动的过程,共同称为全身性运动的事件链,与进入血管组织,系统性地分散的系统性流入和无效的组织中,无效地分散了无效的组织。为了实现细胞间运输,病毒利用质量肿瘤,复杂的胞质桥构成了植物细胞。通过病毒代码蛋白,运动蛋白(MPS)的病毒传递通过质量化的质量传递,该蛋白(MPS)通过两种不同的机制起作用:MPS结合V- ral核酸的通过,并介导了所得运动复合物(M-complexes)在细胞之间的传播和MPS的一部分,或者通过构成孔的一部分渗透到宿主的一部分。颗粒。 在第一个机制中,M-复合物进入相邻的细胞,而不会破坏或不可逆地改变质量症,而在第二个机构中,plasmodesmata被管子替换或显着调节。 在这里,我们总结了有关病毒的局部和系统运动的当前知识,这些知识以非破坏性方式从细胞到细胞发展为M-复合物。 对于本地运动,我们主要关注30 K超家族病毒的运动功能,该病毒用结构同源地编码30 kDa Mosaic Mosaic病毒MP的MP,这是研究最广泛的植物病毒之一,而全身运动之一主要是针对两个良好的模型模型系统,tobaCco Mosaic Mosaic cirus andbocco tobus tobus tody tobacco tobacco tobus tody boty boty tobacco eTy。病毒传递通过质量化的质量传递,该蛋白(MPS)通过两种不同的机制起作用:MPS结合V- ral核酸的通过,并介导了所得运动复合物(M-complexes)在细胞之间的传播和MPS的一部分,或者通过构成孔的一部分渗透到宿主的一部分。颗粒。在第一个机制中,M-复合物进入相邻的细胞,而不会破坏或不可逆地改变质量症,而在第二个机构中,plasmodesmata被管子替换或显着调节。在这里,我们总结了有关病毒的局部和系统运动的当前知识,这些知识以非破坏性方式从细胞到细胞发展为M-复合物。对于本地运动,我们主要关注30 K超家族病毒的运动功能,该病毒用结构同源地编码30 kDa Mosaic Mosaic病毒MP的MP,这是研究最广泛的植物病毒之一,而全身运动之一主要是针对两个良好的模型模型系统,tobaCco Mosaic Mosaic cirus andbocco tobus tobus tody tobacco tobacco tobus tody boty boty tobacco eTy。因为局部和全身运动与宿主细胞的分子基础设施密切相关,