其中 β = 1/k BT 。TUR 对波动系统的精度设定了基本限制,因此很自然地会通过马达与相应 TUR 的饱和程度来表征马达的效率。31 即使马达在无负载的情况下旋转,这种效率测量也是有意义的。在这种情况下,以每单位能量输入的功来衡量的热力学效率必然会消失,因为没有负载就没有功。相比之下,我们讨论的效率衡量的是马达产生定向运动的效率,即使在没有负载的情况下也会发生定向运动。关于 TUR 的大部分文献都涉及相对低维的模型和系统。在这里,我们展示了如何将人工分子马达的高维粒子模型与分子动力学模拟结合使用,以与 TUR 进行直接比较,并解释如何将其用于研究分子马达。这项工作是对当前研究的补充
燃料消耗量的增加导致化石燃料储量日益枯竭。可以利用的一种替代能源解决方案是电能。克服能源危机的一种方法是通过参加节能汽车大赛(KMHE)来发挥创造力。乌达亚纳大学的 Weimana 团队以 Agnijaya Vehicle 为名参加了电动机驱动城市概念类别的比赛。能够参与竞争并赢得比赛的重要方面之一是电机控制器。本文介绍了基于 STM32 Blue Pill 微控制器的无刷直流电机控制器设计的研究成果,该控制器用于旋转 Agnijaya Weimana 城市电动汽车上的 BLDC 电机。所创建的 BLDC 控制器设计的规格是将一个 1980 瓦功率耗散逆变器连接到一个 800 瓦带传感器的 BLDC 电机。基于 STM32 Blue Pill 微控制器的无刷直流电机控制器设计成功并制造完成,当连接到无负载的 BLDC 电机时,会产生包含开关噪声的正弦输出波形。驱动 Agnijaya Wimana 城市电动车的性能能够应用高达 100% 的 PWM 占空比,平均电流达到 24,775 安培,平均电压降高达 48,485 V DC,平均额定功率高达 1200.5 瓦,BLDC 电机速度高达 419.5 RPM。关键词:电动汽车,BLDC 电机,无刷直流控制器。
引言由于其成熟度,可靠性和高功率密度,在国防工业中众所周知,在“一击”系统中使用的热电池是众所周知的。他们不需要充电,没有加热,没有用于运输/存储的物流约束,也没有专用的地面安装。热电池提供任何储备电池技术的最高功率密度,并且不受压力,温度,湿度等环境条件的影响。它们可用于并联或系列连接的几组电池组中,从而提供模块化。可以在发射之前激活热电池,并在无负载的“空闲时间”中安全地坐在高功率放电之前的几分钟内。拥有如此悠久的记录,热电池是支持空间和防御工业中不断增长的需求的绝佳解决方案。在国防行业的先前应用中已证明了将LAN阳极用于热电池的使用。lan由纯锂阳极组成,在机械上固定以允许实施实施,而无需将锂与另一种材料合并。由于LAN阳极的固有性能特征,它已用于需要在相对较小的电池量内进行高功率输出的应用。设计注意事项电流密度:热电池通常以1A/cm2的稳态电流密度运行,在数百毫秒内持续时间短,持续时间短的高电流脉冲为10A/cm2。解决此问题的主要手段是通过实现满足高电流需求的实际实现需要增加电池量,并具有增加电压和电池表面积的目标。