Ruandha Agung Sugardiman 电子邮件:ra.sugardiman@dephut.go.id ra.sugardiman@gmail.com Ruandha Agung Sugardiman,2007 太空雷达监测森林火灾和森林覆盖率变化。加里曼丹案例研究/Sugardiman,R.A. 博士论文,瓦赫宁根大学,瓦赫宁根,荷兰,参考文献和摘要为英文和荷兰文。ISSN:1566-6522 ISBN-13:978-90-5113-087-4(Tropenbos 版本)ISBN:90-8504-604-1(论文版本)© 2007 MOF – Tropenbos-Kalimantan 计划,R.A. Sugardiman 本出版物中表达的观点均为作者的观点,并不一定反映 Tropenbos International 的观点。未经事先书面许可,不得以任何形式(包括印刷影印、缩微胶卷和电磁记录)复制、重新录制或出版本出版物的任何部分(书目数据和评论中的简短引文除外)。封面:ERS、ENVISAT、SRTM 和 ALOS 卫星;多时相 ERS-2 SAR 合成图和 3D 视图。感谢 ESA、NASA 和 JAXA。由荷兰瓦赫宁根的 Drukkerij Ponsen en Looijen BV. 印刷
摘要 在星载雷达观测海洋的各种挑战中,以下两个问题可能更为突出:动态分辨率不足和垂直穿透效果不佳。未来十年,雷达干涉测量和海洋激光雷达技术可能会取得两项备受期待的突破,预计它们将对亚中尺度分辨和深度分辨的海洋观测做出重大贡献。计划中的“观澜”科学任务包括双频(Ku 和 Ka)干涉测高仪(IA)和近天底指向海洋激光雷达(OL)。星载主动 OL 将确保更深的穿透深度和全时探测,从而对地下海洋的光学特性进行分层表征。OL 和双频(Ku 和 Ka)干涉测高系统的同时运行将使我们更好地了解大气和海气界面的贡献,从而大大减少两个传感器的误差预算。 OL有效载荷有望部分揭示真光层中垂直间隔10米的海洋食物链和生态系统,在动态和生物光学上向海洋混合层迈出重要一步。
1. Glaser, P. (1973)。将太阳辐射转换为电能的方法和装置。美国专利商标局,华盛顿特区 2. JE Drummond, JE (1980)。低地球轨道和地球同步地球轨道的比较,Power Conversion Technology, Inc. 3. Jones, R. (2010)。替代轨道 - 一种新的太空太阳能发电参考设计,在线空间通信杂志,2010 年第 16 期 http://spacejournal.ohio.edu/issue16/jones.html 4. Mankins, JC Mankins。(2006)。美国土木工程师学会地球与空间会议论文集。2006 年大会,德克萨斯州联盟城。空间电网 - 太空太阳能发电的进化方法。美国国家航空航天局,华盛顿特区 5. Komerath, N., Boechler, N. Wanis, N. (2006)。空间电网 — 空间太阳能发电的进化方法,美国土木工程师学会地球与空间分会 2006 大会论文集,德克萨斯州联盟城,2006 年 4 月 6. Brown, C. (1992)。波束微波电力传输及其在空间中的应用,IEEE 微波与技术学报,第 40 卷第 6 期。 7. 格鲁曼航空航天公司,星载雷达研究,1974 年 8. Komerath, N., Nicholas B. (2010)。空间电网,佐治亚理工学院航空航天工程学院,美国佐治亚州亚特兰大 30332-0150 9. Criswell, D. (2009)。月球太阳能发电 (LSP) 系统:实现可持续繁荣的实用方法,搜索与发现文章 #70070 10. Bekey, R. 和 Boudreault, R. (1999)。经济上可行的太空电力中继系统,Elsevier Science Ltd. 出版。11. Hopkins, M. (1980)。卫星发电站和非成本不确定性风险方面。兰德公司。12. Geoffrey A. Landis,《重新发明太阳能卫星》,美国国家航空航天局,格伦研究中心,俄亥俄州克利夫兰,2004 年。13. Mankins, JC (1997)。重新审视太空太阳能:新架构、新概念和技术,IAF-97-R.2.03,第 38 届国际宇航联合会,美国国家航空航天局高级项目办公室。14. 美国国家科学院国家研究委员会。(2001)。为太空太阳能奠定基础:对 NASA 太空太阳能投资战略的评估。对 1999-2000 年进行的 NASA 空间太阳能 (SSP) 探索性研究和技术 (SERT) 计划的评估,95 页。15. Komerath, N.、Venkat V. 和 Butchibabu, B. 空间电网的参数选择