摘要 — 低地球轨道 (LEO) 上的密集小型卫星网络 (DSSN) 可使多种移动地面通信系统 (MTCS) 受益。然而,只有通过仔细考虑 DSSN 基础设施并确定合适的 DSSN 技术才能实现潜在优势。在本文中,我们讨论了 DSSN 基础设施的几个组成部分,包括卫星编队、轨道路径、卫星间通信 (ISC) 链路以及从源到目的地的数据传输通信架构。我们还回顾了 DSSN 的重要技术以及在 DSSN 中使用这些技术所面临的挑战。本文还确定了几个开放的研究方向,以增强 DSSN 对 MTCS 的优势。还包括一个案例研究,展示了 DSSN 在 MTCS 中的集成优势。
摘要 — 在下一代无线系统和网络的曙光中,大规模多输入多输出 (MIMO) 已被设想为使能技术之一。随着在 5G 及更高版本的应用中不断取得成功,大规模 MIMO 技术已显示出其优越性、可集成性和可扩展性。此外,近年来,大规模 MIMO 的几种演进特征和革命性趋势逐渐显现,有望重塑未来的 6G 无线系统和网络。具体而言,未来大规模 MIMO 系统的功能和性能将通过结合其他创新技术、架构和策略来实现和增强,例如智能全向表面 (IOS)/智能反射面 (IRS)、人工智能 (AI)、THz 通信、无蜂窝架构。此外,基于大规模 MIMO 的更多不同的垂直应用将会出现并蓬勃发展,例如无线定位和传感、车载通信、非地面通信、遥感、行星间通信。
立方体卫星激光红外交联 (CLICK) 任务将展示推动小型航天器星间通信技术发展的最新技术。该任务的主要目标是在轨演示两颗六单元 (6U) 小型卫星之间的全双工(发送和接收)激光交联,也称为光通信,两颗卫星之间的距离在 15 至 360 英里(25 - 580 公里)之间,数据速率超过 20 兆比特每秒 (Mbps)。该任务还将展示精确的卫星间时钟同步和 10 厘米级的测距。能够发送和接收激光通信的微型光学收发器将在两颗卫星之间形成通信交联,并通过新的精细指向功能支持它们的对准。由于激光通信高数据速率传输的功率效率,微型光学收发器是对射频(RF)技术的改进,这减轻了对小型平台在尺寸、重量和功率方面已经很严格的限制的影响。
Milstar 系统由地球同步轨道上的多颗卫星组成。Milstar 可在南北极之间提供 24 小时不间断的全球覆盖。Milstar 系统由三个部分组成:空间(卫星)、地面(任务控制和相关通信链路)和终端(用户部分)。这些部分将使用低数据速率 (LDR) 和中数据速率 (MDR) 波形以指定的数据速率提供通信,速率范围从 75 bps 到大约 1.5 Mbps。空间部分由在轨卫星系统组成,利用交联通信实现卫星间通信。任务控制部分控制在轨卫星,监测飞行器健康状况,并提供通信系统规划和监测。该部分具有很高的生存能力,既有固定控制站,也有移动控制站。系统上行链路和交联链路将在极高频率范围内运行。终端部分包括所有服务使用的固定和地面移动终端、船舶和潜艇终端以及机载终端。空间系统司令部(SSC)负责采购空间和地面部分以及空间部队终端部分。
卫星间通信(混合光学/RF)变得越来越重要,尤其是对于小型卫星星座。在这方面,除了利用潜在的更便宜且更可扩展的技术外,还可以减少有效载荷的尺寸,重量和功率(交换)的集成光子系统和RF硬件可能会降低有效载荷的尺寸,重量和功率(交换)。光子学不仅可以用于光学收发器,还可以用于软件定义的RF收发器中的频率灵活性和高性能。在基于光子学的无线电检测和范围(雷达)和RF通信收发器中,电路被完全光学的电路代替,避免了光学到电子转换(O-E-O)转换,以及随之而来的额外功耗和功耗[9] [10]。此外,有可能在同一卫星上集成不同的任务功能(即将两个任务集成到一个任务中)。实际上,组合的雷达/激光雷达系统将具有增强的性能,同时,在利用单个系统的均匀检测条件下捕获异质数据的能力。在这种情况下,同一集成系统的共享将允许减少系统的交换和成本(SWAP-C)。
AEHF 系统由地球同步轨道上的卫星组成,其吞吐量是 1990 年代 Milstar 卫星的 10 倍,用户覆盖范围大幅提高。最后一颗 AEHF 卫星于 2020 年 3 月 26 日发射,是美国太空军的首次发射。AEHF 可在南北极之间提供 24 小时不间断的全球覆盖。AEHF 系统由三个部分组成:空间(卫星)、地面(任务控制和相关通信链路)和终端(用户部分)。各部分将以 75 bps 到大约 8 Mbps 的指定数据速率提供通信。空间段由在轨卫星系统组成,利用交联通信实现完整的卫星间通信。任务控制段控制在轨卫星、监测飞行器健康状况并提供通信系统规划和监测。该段具有很强的生存力,拥有多个控制站。系统上行链路和交联链路将在极高频率范围内运行。终端部分包括所有军种和国际合作伙伴使用的固定和地面移动终端、船舶和潜艇终端以及机载终端。太空系统司令部 (SSC) 负责采购太空和地面部分以及太空部队终端部分。
具有可重构群(遮阳板)任务的虚拟超分辨率光学器件是一种新颖的立方体形成望远镜任务,旨在研究太阳能电晕中的基本能量释放机制。遮阳板是最初在国家科学基金会(NSF)Cubesat Innovations Ideas Ideas实验室研讨会上构思的任务。该任务将使用两个6u立方体的角度分辨率在极端超紫罗兰(EUV)中观察到电晕,并使用两个6U立方体,它们相距40米,形成分布式望远镜。实现此类任务需要在衍射光学,卫星间通信,立方体推进和相对导航领域的关键技术。这些技术中任何一种的开发都是新颖的,但是所有这些技术结合起来都可以真正地使遮阳板使命。将这些技术巩固到立方体形式中,构成了机械和系统设计的挑战。本文重点介绍了遮阳板的初步有效负载设计,将关键技术组合为6U型的固有的挑战以及使有效负载设计成熟的关键下一步。与10所不同的大学一起工作,并预计在2023年末推出,遮阳板任务将展示Cubesats执行高精度冠状图像的能力,并将为未来的Cobesat群群铺平道路。
英国制造的 Prometheus 2 成像和监测立方体卫星有望在英国发射 空中客车联合设计的 Prometheus 2 立方体卫星已完成最终环境和振动测试,准备从康沃尔发射 @AirbusSpace @dstlmod @Heads_InSpace #defencematters #SpaceMatters #NextSpace 史蒂文尼奇,2022 年 9 月 7 日 — — 由空中客车和 In-Space Missions 联合设计的 Prometheus 2 卫星有望于今年晚些时候从英国康沃尔郡纽基发射,环境测试已完成,振动测试正在进行中。 Prometheus 2 立方体卫星由国防科学技术实验室 (Dstl) 代表国防部 (MOD) 所有。它们由空中客车防务与航天公司共同出资,In-Space Missions Ltd 负责建造。两颗谷物盒大小的 Prometheus-2 立方体卫星将在距离地球约 550 公里的低地球轨道上运行,并将为包括 GPS 在内的复杂成像和监测无线电信号提供测试平台。这些卫星将通过开发以朴茨茅斯附近国防科技实验室为重点的地面系统,支持国防部在轨道和地面的科学和技术 (S&T) 活动。每颗立方体卫星将安装单独的设备,以测试未来概念,以支持国防部未来的太空情报和监视 ISTARI 计划。空客有效载荷将支持公司针对未来低地球轨道操作、ISR 任务概念的内部研发项目以及外部第三方客户的研发需求。空中客车防务与航天英国公司董事总经理理查德·富兰克林表示:“实现这一重要里程碑进一步证明了政府和空客与中小企业合作投资的价值,这些投资旨在快速在轨道上取得成果,并帮助支持和发展英国航天工业生态系统。设计并制造首颗在英国发射的小型卫星,对于参与此次成功合作的所有人来说都是一项伟大的成就,同时也是去年发射的普罗米修斯 1 号有效载荷成功的基础。”这些有效载荷采用了现代软件定义无线电技术,还将使第三方组织能够使用普罗米修斯 2 星座来研究信号收集、卫星间通信、在轨数据处理、空间领域感知和定位、导航和计时或地理定位功能。通过空中客车防务与航天有限公司可以获得此项研究能力。这些卫星是研究演示器,不会用于国防情报、监视和侦察 (ISR) 行动。从这次任务中获得的经验教训将用于降低关键技术风险,产生下一波合作实验,加强国际伙伴关系并支持 Dstl 自己的卫星运营。