摘要 数千年来,人类一直梦想着探索地球和太阳系以外的空间。本文讨论了如何利用当今或不远的将来的技术实现这种星际旅行,特别关注推进技术。首先,本文考虑了星际旅行背后的动机,即它将提供有关系外行星和星际介质的大量科学信息。然后,本文讨论了使用传统航天器进行星际旅行时面临的许多挑战,包括距离、时间和能量方面的挑战。然而,许多可能的替代推进技术解决了这些问题。本文讨论的三种技术是离子发动机、核脉冲推进和光帆。本文使用全面的 Pugh 矩阵分析了每种技术的适用性。本文得出结论,光帆是星际任务的最佳选择,因为它们具有高比冲和最终速度。利用光帆技术开发了在 50 年内飞越我们最近的恒星比邻星的基础任务概念。任务概念包括讨论推动光帆所需的激光器、探测器的大小和质量、机载仪器、任务时间表、通信、部署,最后是风险分析。本文最后介绍了创建此类任务所需的未来进步和研究。
现代怀疑论者可能会问的基本问题是:“为什么要执行星际任务?”仅在二十多年前,其他怀疑论者也发表了类似的话,即“为什么要去月球?”尽管与等待整个银河系中我们探索机器的发现相比,这些尚未发现的科学宝藏包含许多世界上有许多有趣和奇怪现象的世界,但这些尚未发现的科学宝藏是适度的,甚至可能是微不足道的。自1957年太空时代的黎明以来,星际旅行已经从梦想过渡到现实。人类的新梦想现在是星际旅行\大多数当代技术有远见的人都表明,如果我们选择永远留在我们的宇宙摇篮中,我们将无法作为一个物种繁荣起来(甚至最终生存)。实际上,人类基本上仍处于危险之中,直到我们永久扩展到本地星球的祖先生物圈超越太阳系。星际旅行为我们提供了真正长期生存的人类生活。在我们的地球在由于宇宙灾难(例如,小行星的影响)或人类愚蠢(例如,全部核战争)而变得无居住之前,当然,在我们的太阳去世之前(从现在起约50亿年)(我们必须从现在起约50亿年)(我们必须建立技术,政治,政治和经济基础设施,才能从中获得“到达星星”。本文探讨了一个复杂的机器人航天器系列的重要作用,即我们的合作伙伴和机器先驱在通过银河系的命运之旅中发挥作用。[1-4]
摘要 迈出了空中行星探索的第一步。Ingenuity 显示出非常有希望的结果,新的任务已经在进行中。旋翼机能够飞行。这种能力可用于支持进入、下降和着陆的最后阶段。因此,可以缩小质量和复杂性。自转是一种下降方法。它描述了无动力下降和着陆,通常由直升机在发动机故障时执行。建议使用 MAPLE 来测试这些程序并了解其他行星上的自转。在这一系列实验中,使用了 Ingenuity 直升机。Ingenuity 将在继续正常飞行之前自转“空中着陆”。最终,收集的数据将有助于了解火星上的自转及其在行星际探索中的应用。
摘要太阳帆技术已被提出和开发用于太空探索,具有低启动成本,无促性剂消耗和连续推力的优势,在地球极地检测,星际探索等方面具有巨大的潜力。在过去几十年中,太阳帆的发展在结构设计,制造,材料,轨道转移和可行性控制方面取得了重大进展,这对天文学,物理学和航空科学做出了有意义的贡献。在当前的太阳帆任务中,已经实现了太阳辐射压力(SRP)推进和星际转移的技术突破。但是,仍然存在许多挑战,需要解决问题。本文试图从关键技术的角度总结太阳能帆船在太空任务中的研究方案和潜在应用,以便为该领域的研究人员提供整体观点。提供了太阳帆系统设计的关键技术的分析。最后,讨论了太阳帆船的挑战和前瞻性发展。2023代表中国航空和宇航学会的Elsevier Ltd.的生产和主持。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
太空探索和利用格局的快速发展推动人类进入了技术进步和科学发现的新时代。随着我们不断超越地球的界限,建立国际公认的标准以确保太空活动的安全性、可持续性和有效性变得越来越重要。在这方面,INSPACe 与印度标准局 (BIS) 之间的合作证明了全球社会致力于促进负责任和创新的太空实践。这些机构制定的综合空间标准反映了专家、工程师和专业人士的集体智慧和奉献精神,他们认识到需要协调与太空相关的各种努力中的程序和规范。空间标准提供了一个超越边界、文化和任务的框架。它们为互操作性、风险缓解和成功执行任务奠定了基础,无论任务的性质或范围如何。无论是发射卫星、建立太空栖息地、开展科学研究还是从事星际探索,遵守明确的标准都可以提高任务的可靠性、最大限度地减少冲突并最大限度地发挥突破性发现的潜力。当我们探索太空提供的无限可能性时,我们意识到我们有责任不仅要保护我们这一代人的利益,还要保护子孙后代的利益。通过 INSPACe 和 BIS 的合作阐明的印度航天工业标准囊括了最新的知识、技术实力和
上下文。cometary子流线小径存在于彗星附近,形成了星际尘埃云的细胞结构。这些步道主要由最大的彗星颗粒组成(大小约为0.1 mm – 1 cm),它们以低速弹出,并保持非常接近彗星轨道,以围绕太阳的几次旋转。在1970年代,向内部太阳系推出了两个Helios航天器。航天器配备了原位灰尘传感器,该传感器第一次测量了内部太阳系中星际尘埃的分布。最近,当重新分析HELIOS数据时,发现了七个影响的聚类,由Helios在非常狭窄的空间区域中检测到,真正的异常角度为135±1°,作者认为这是潜在的cometary Trail颗粒。但是,当时无法进一步研究该假设。目标。我们在Helios Dust Data中重新分析了这些候选彗星径向粒子,以调查某些或全部确实起源于彗星步道的可能性,并且我们限制了它们的源彗星。方法。空间模型中用于探索的星际探索(IMEX)尘埃流是一种新的且最近发布的通用模型,用于内部太阳系中的彗星气星流。我们使用IMEX研究Helios制作的彗星径的遍历。结果。在太阳周围的十革命中,Helios航天器与13条彗星小径相交。在大多数遍历中,预测的灰尘频量非常低。结论。在Helios检测到候选粉尘颗粒的狭窄空间区域中,航天器反复穿越45p/Honda-Mrkos-Pajdušáková彗星的步道,并具有72p/Denning-fujikawa,具有相对较高的预测粉尘。对检测时间和粒子冲击方向的分析表明,四个检测到的粒子与这两个彗星的来源兼容。通过组合测量和模拟,我们在这些小径中发现了尘埃空间密度,约为10-8 –10-7 m -3。在较狭窄的空间区域中,径向遍历的聚类构成了Helios数据中潜在的彗星径向颗粒的识别。基于航天器的尘埃分析仪可以将其追溯到其源体的现场检测和分析,为对彗星和小行星的远程组成分析提供了一个新的机会,而无需将航天器吹入甚至降落在这些天体上。这为命运 +(例如,与Phaethon Flyby and Dust Science的空间技术的示范和实验),Europa Clipper以及星际映射和加速探针提供了新的科学机会。