摘要:硬碳被广泛认为是钠离子电池(SIB)最有前途的阳极材料。硬碳是一种不可塑化的碳,其特征是涡轮层结构,其碳层堆叠量无序,每个碳层都由几个纳米尺寸的石墨烯层组成。即使在2500°C以上的温度下也很难将其石墨。这种独特的结构,结合其低成本,高电导率,低工作电压和高容量,使硬碳可以实现出色的钠离子存储性能。这些特征使其成为商业上最可行的阳极材料。最近的研究还积极探索了生物质而不是高成本无机材料的使用,以降低生产成本,最大程度地减少生物质焚烧中的污染,并减少每年产生的大量生物废物。这项研究研究了源自木质素的硬碳阳极的性能,商业石墨作为对照。X射线衍射(XRD),拉曼光谱,扫描电子显微镜(SEM),透射电子显微镜(TEM)和X射线光电子光谱(XPS)用于分析其晶体学结构,显微结构,显微结构和表面元素组成。电化学性能使用由EC/DEC/DEC(1:1 v/v)组成的电解质(1:1:1 v/v)在DEGDME中为5 wt%FEC和1M NAPF 6。通过在不同电解质条件下比较硬碳和石墨的电化学特性,本研究证明了硬碳作为钠离子电池应用的有希望的阳极材料的潜力。
这项研究介绍了用碳黑色)复合材料介绍了PETG-CB(聚(乙二醇乙二醇)乙二醇,这是一种新的形状存储聚合物4D,使用融合沉积模型(FDM)方法打印。纳米复合材料,以增强4D打印应用中PETG的功能性能。采用微观和宏观尺度上的全面表征,包括动态热机械分析(DMTA),扫描电子显微镜(SEM)和机械测试,以评估粘弹性行为,显微结构完整性,以及在热刺激下的质量强度。实验结果表明,CB添加显着改变了玻璃过渡温度并提高机械性能,1%CB复合材料表现出最佳的拉伸强度和增强的形状记忆效应。SEM分析证实了CB的均匀分布
摘要:通过固态合成和烧结,基于两个铜硼酸盐和Cu 3 b 2 O 6的新陶瓷材料,并将其表征为低介电介电介电常数的有希望的候选者,用于很高的频率电路。使用加热显微镜,X射线衍射测量法,扫描电子显微镜,能量分散光谱镜检查和Terahertz时间域光谱研究了陶瓷的烧结行为,构成,显微结构和介电特性。研究表明,频率范围为0.14–0.7 THz的介电介电常数为5.1-6.7,介电损失低。由于低烧结温度为900–960℃,基于铜硼酸盐的材料适用于LTCC(低温涂层陶瓷)应用。
糖尿病和其他病理状况会破坏伤口愈合过程,导致慢性伤口,导致严重感染。蛋白蛋白,例如溶菌酶和卵纤维蛋白,引起了人们的兴趣,尤其是因为它们表现出的抗氧化剂和抗菌活性。这些生物活性蛋白可以用来富集晚期伤口敷料膜,这可以帮助控制伤口氧化应激,从而加速伤口愈合和/或预防细菌感染。这项工作的目的是根据合成聚合物和多糖的混合物开发新型的水凝胶制剂,并掺入蛋清蛋白和/或肽,以研究其作为高级伤口敷料的适用性。研究了水凝胶的流变特性,以评估粘弹性和凝胶化行为。通过扫描电子显微镜研究了水凝胶敷料的显微结构。还评估了PBS缓冲液中的侵蚀。获得了具有伤口愈合中潜在应用的柔性,皮肤粘附的水凝胶膜。
这项研究工作与使用干柠檬皮粉和环氧树脂的复合纤维板的制造有关,这些树脂可用作胶合板或木材的替代品。这项研究的目的是评估这种新型复合纤维板的机械和微观结构特性。评估其吸收能量的强度和能力,对不同的标本进行了不同的测试。为了理解树脂内的形态和填充颗粒分布,还使用扫描电子显微镜(SEM)检查了制造的复合材料的显微结构。根据实验发现,复合材料的机械性能,例如硬度22.45(维克斯),拉伸强度14.7 MPa,弯曲强度27.9 MPa和冲击强度21.76 J/m 2,在胶合板方面显得有前途。此外,SEM研究表明了浪费干燥柠檬皮颗粒(DLPP)和环氧树脂之间的完美键合,从而有助于改善机械性能。
摘要:在本文中,详细研究了由高电流脉冲电子束处理的ZR-17NB合金的微观结构和磨损固定性。使用X射线衍射(XRD)分析后的脉冲处理后的相位变化,显示了由β(ZR,NB)相的一部分形成的β(nb)相和α(ZR)相。另外,还发现了β(ZR,NB)衍射峰的变窄和移动。扫描电子显微镜(SEM)和金相分析结果表明,高电流脉冲电子束(HCPEB)治疗之前合金表面的显微结构是由等上晶体组成的。但是,在15和30脉冲处理后,陨石坑结构得到了显着造成的。此外,还发现合金表面在30脉冲处理后经历了共菌体转化,并且发生了β(ZR,NB)的反应→αZR +βNB。显微硬度测试结果表明,随着脉冲数量的增加,微标志的值会出现向下趋势,这主要是由于谷物的块状和较软的β(nb)相变的形成。磨损耐药性测试结果表明,摩擦系数首先增加,然后降低,然后随脉冲数的增加而增加。
本文使用醋酸锌作为前体的SOL-GEL方法提出了纳米晶锌(ZnO)颗粒的合成。ZnO的钙化温度变化以确定其对粒径的影响。使用X射线衍射(XRD),傅立叶变换红外(FTIR),紫外线 - 可见光谱(UV-VIS)和扫描电子显微镜(SEM)表征所得的样品。纳米晶元素ZnO颗粒的含量为16 nm至30 nm。合成的氧化锌纳米颗粒的能带间隙随着钙化温度和结晶石尺寸的增加而降低。SEM显微照片显示ZnO纳米颗粒的水稻样显微结构形态。在若丹明B染料的降解中还探索了ZnO纳米颗粒作为光催化剂的使用,并特别注意粒度和催化剂负载对染料降解效率的影响。当施加0.2 g催化剂载荷时,在400 C下钙化的纳米颗粒的降解效率最高为95.41%。2019 Elsevier Ltd.保留所有权利。在国际纳米结构,纳米工程和高级材料的国际委员会科学委员会的责任下进行选择和同行审查。
摘要:选择性激光熔融成功用作生产Ni-Mn-GA和Ni-Mn-GA-FE铁磁形状的存储合金的制造方法。通过铣削AS AS熔体丝带制成,平均粒径约为17.6 µm的粉末形式的起始材料。通过几种方法研究了粉末前体和激光合金的显微结构,相组成和马塞西质转化行为,包括高能X射线衍射,电子显微镜和振动样品磁力测定法。AS激光熔化的材料是化学均匀的,并显示出典型的分层微观结构。两种合金组合物均具有双链结构,其中包括奥斯丁岩和10m马氏体(Ni-MN-GA)或14M和NM Martensitic相(Ni-MN-GA-FE)的混合物,与两种情况下显示FCC结构的AS铣削粉末前体相反。Ni-MN-GA和Ni-Mn-GA-FE分别进行了前向马心形变化,而Ni-MN-GA的磁反应分别为325 K,而Ni-MN-GA的磁反应要强得多。结果表明,选择性激光熔化允许生产高质量的同质材料。但是,它们的微观结构特征并因此塑造了记忆行为,应通过额外的热处理量身定制。
抽象目的 - 本文的目的是开发和测试热界面材料(TIM),以用于组装半导体芯片包装中。这项研究的目标是良好的粘附特性(> 5MPA剪切强度)和低热界面电阻(比SAC焊料更好)。设计/方法/方法 - 研究了芯片和底物的金色接触之间的TIM关节的机械和热性能。烧结技术。通过剪切力测试和热测量评估性能特性。扫描电子显微镜用于形成关节的横截面的显微结构观察。发现 - 得出结论,对于含有数十个微米大小的球形AG颗粒的糊状物的最佳特性是达到的,具有较少微米的粉状Ag颗粒。在230°C下的烧结温度,在烧结过程中施加1 MPa力在芯片上具有更高的粘附性和最低的热界面电阻。独创性/价值 - 基于含有不同大小的Ag颗粒(形成数十个微米)的Ag颗粒的混合物的新材料,并提出了悬浮在树脂中的形状(球形,含量)。在230°C下用施加压力在230°C下制备的关节比其他TIM材料(例如热油脂,热凝胶或热导电粘合剂)表现出更好的机械和热材料。这些材料可以在200°C以上的温度下实现电子设备操作,目前无法用于基于SI的电源电子设备。
各种生物量废物的可用性以及针对森林砍伐的严格规则导致了颗粒板开发中废物生物量的利用增加。如果无法正确管理,这些生物量废物会变成环境污染物。因此,它们在开发刨花板中的利用有助于实现可持续的环境,这是联合国可持续发展目标之一。这项研究回顾了来自稻壳,木屑,玉米棒,甘蔗渣,燕麦酱,燕麦壳,椰子纤维,槟榔,黑麦稻草,番茄,番茄粉,榛子,榛子和Castor husk等生物质量废物的一些生产技术。对使用扫描电子显微镜的发达颗粒板的特性(物理,机械,化学和热的)和显微结构进行了严格审查。密度值用于将颗粒板分类为低密度,中密度和高密度颗粒板。使用吸水和厚度肿胀值确定颗粒板的耐用性,存放性和尺寸稳定性。弹性和破裂模量的模量有助于确定按照适当标准的颗粒板的质量和适用性。较低的热导率表示更好的绝缘性能。陈述了刨花板生产和利用的挑战和前景。废物生物量用于颗粒板生产是可持续的,以防止环境污染和森林砍伐。