我们要向位于捷克共和国布拉格 5 Zbraslav Nad Kamínkou 1345 的 UJP PRAHA 表示感谢,他们为我们提供了大量用于 AI 开发的样品,并友好地批准我们将其用于我们的粒度手册和演示文稿中。
简单的光学技术。但是,EBSD 的自动化特性意味着它可以提供更多信息,而不受个人操作员的技能和主观性的影响,例如在自动图像分析的样品照明设置中。尽管 EBSD 可以自动化晶粒尺寸测量过程,但在样品制备、操作条件选择和采集后降噪的使用方面仍需谨慎。报告了这些对测量晶粒尺寸影响的实际示例,并将 EBSD 结果与光学获得的结果进行了比较,突出了 EBSD 在检测较小晶粒和检测孪晶边界方面的更高分辨率的影响。它讨论了报告结果的方式,并将结果与晶粒尺寸分布的理论预测进行了比较。这项工作是在更广泛的背景下进行的,需要量化微观结构异质性,以验证工程合金热变形的变形模型,该模型是与谢菲尔德大学和威尔士大学(斯旺西)联合项目的一部分。K P Mingard、E G Bennett、A J Ive 和 B Roebuck 2006 年 1 月
DEPC (MN) 037 高温压缩试件的微观结构映射 - 通过电子背散射衍射进行晶粒尺寸计量摘要电子背散射衍射 (EBSD) 越来越多地被用于通过映射试件截面的晶体学取向来表征许多工程材料的微观结构。这些晶体学信息传统上用于揭示详细的相和纹理信息,但它也可以提供有关晶粒尺寸和相关参数的大量信息。这些参数有时被视为直接光学技术的简单测量值。然而,EBSD 的自动化特性意味着它可以提供更多信息,而不受个别操作员的技能和主观性的影响,例如在设置样品照明以进行自动图像分析时。虽然 EBSD 可以自动化晶粒尺寸测量过程,但在样品制备、操作条件的选择和使用采集后降噪方面仍需小心。本文报告了这些对测量晶粒尺寸影响的实际例子,并将 EBSD 结果与光学结果进行了比较,突出了 EBSD 在检测较小晶粒和检测孪晶界时更高的分辨率所产生的影响。本文讨论了报告结果的方式,并将结果与晶粒尺寸分布的理论预测进行了比较。这项工作是在需要量化微观结构异质性的更广泛背景下进行的,以便验证工程合金热变形的变形模型,这是与谢菲尔德大学和威尔士大学(斯旺西)联合项目的一部分。KP Mingard、EG Bennett、AJ Ive 和 B Roebuck 2006 年 1 月
摘要 12 家实验室开展了一项跨实验室练习,使用电子背散射衍射 (EBSD) 测量钛金属样品的平均晶粒尺寸,该样品的平均晶粒尺寸约为 30 µm。参与者被要求遵循拟议的国际标准草案 ISO DIS13067“微束分析 - 电子背散射衍射 - 晶粒尺寸和分布测量”。在提交的初始结果中,12 家实验室中有 4 家报告的等效圆直径值与总体平均值有显著差异。在三种情况下找出了这些差异的原因,对两种情况进行了修正,然后对数据进行了全面的统计处理,以消除剩余的异常值。通过测量等效圆直径计算出的平均晶粒尺寸比使用线性截距测量法计算出的值大约大 10%。结果显示,实验室之间的平均值差异(再现性)比单个实验室进行的几次测量之间的差异(重复性)大得多。等效圆直径测量的可重复性极限比线性截距测量的可重复性极限高出约 80%,这可能是因为校准漂移和垂直于倾斜轴的倾斜校正产生的额外误差仅对前一种方法有影响。讨论了结果差异的来源,并得出结论:选择要包括在平均值计算中的最小晶粒尺寸对报告值的影响最大。选择相对较大的截止尺寸可能会产生最佳一致性,因为最小晶粒可能会产生显著的影响(与其占据的面积不成比例),并且晶粒的数量和大小最有可能随着所选的步长、数据质量和/或索引不良点的处理而变化。
粗晶粒和柱状晶粒结构沿增材制造金属的构建方向外延生长是一种常见现象。因此,成品部件通常表现出明显的各向异性机械性能、延展性降低,因此开裂敏感性高。为了提高增材制造部件的机械性能和可加工性,等轴和细晶粒结构的形成被认为是最有益的。在本研究中,研究了激光丝增材制造过程中通过超声波激发熔池来细化晶粒的潜力。开发了一种超声波系统并将其集成到激光丝沉积机中。AISI 316L 钢用作基材和原料。通过光学显微镜、扫描电子显微镜和电子背散射衍射分析,证实了粗柱状晶粒 (d m- = 284.5 μ m) 转变为细等轴晶粒 (dm = 130.4 μ m),并且典型的 <100> 纤维织构随着振幅的增加而减弱。结果表明,晶粒细化的程度可以通过调节超声振幅来控制。没有观察到树枝状结构的显著变化。超声焊极/熔池直接耦合与激光丝沉积工艺的结合代表了一种开创性的方法和有前途的策略,可用于研究超声对晶粒细化和微观结构调整的影响。
发掘过程中的抽象堵塞是机械挖掘中的常见问题之一。在切割器头部堵塞的影响因素中,我们可以提到细土颗粒(200个网状筛),土壤水分和土壤类型的百分比。在这项研究中,为了研究实验室中的隧道发掘机制,设计和构建了隧道开挖机实验室模拟器。该设备的特征是其水平操作,切割机头的低旋转速度,测试过程中销与新鲜土壤的连续接触,以及在测试过程中连续的添加剂与特定的注入压力。研究了研究细粒度,土壤含量和泡沫注入比(FIR)对堵塞,消耗能量以及切割工具的平均磨损的影响。结果表明,随着细土颗粒百分比从90%增加到100%,切割工具的堵塞增加了50%。同样,随着土壤水分从干燥状态增加到5%的水分含量,切割机头的堵塞是微不足道的,此后,随之而来的是,水分从10%增加到25%,堵塞量增加了178%,每次测试中消耗的能量量增加了84%。此外,通过将泡沫注入比从40%增加到60%,平均堵塞减少了81%,而切割工具的磨损平均降低了62%。
KORA天文学,空间和空间空间。 776大韩民国3 SNU天文学研究中心,首尔1号,格温纳卡(Gwinakan)08826,韩国:679-5313,日本714-1411,日本
KORA天文学,空间和空间空间。 776 100,首尔08826,首尔08826韩国4。天文台,157-1 NSSIN,北海道096-0066,日本,
纳米晶薄膜的光吸收可能会受到孔隙率和晶粒尺寸效应的影响。如果两者同时存在,则它们的效果很难分开。在这项研究中,这表明在多孔CEO 2部门对UV-VIS透射率和反射测量的组合提供了足够的数据以使这种分离。首席执行官2纤维是通过纳米化〜的沉积来制备的; 5 nm!从水胶体悬浮液到蓝宝石的颗粒,并将这些膜的颗粒呈现到烧结的温度上,以提供高度高的薄膜,提供典型厚度为0.6 m m的薄膜,具有较高的晶粒尺寸和孔隙率。X射线衍射,扫描电子显微镜,椭圆法和纤维计量法被用来表征膜的表征,并将观察到的晶粒尺寸和孔隙率与从光学测量中获得的孔径进行比较。所有使用的技术都给出了孔隙率和晶粒尺寸的结果,这些孔隙率和晶粒尺寸分别从15%到50%和5至65 nm。对于这些多孔纤维,发现吸收的变化通常由小晶体大小而导致的量子结构效应来解释,这主要归因于孔隙率的变化,而不是晶粒尺寸的变化。©2001美国物理研究所。@ doi:10.1063/1.1389329#
钛基磷酸钾(KTIOPO 4),通常称为KTP,以其在量子和光学技术中的应用而闻名。这项研究的重点是采用水热和共沉淀方法的KTP纳米晶体的合成,采用草酸作为封盖剂。X射线粉末衍射(XRD)分析证实了正骨KTP晶体的成功合成。傅立叶变换红外(FT-IR)光谱进一步验证了KTP内的键结构,其特征带对应于其在所有光谱中始终观察到的晶体结构。定量分析表明,水热方法产生的KTP纳米颗粒的平均晶粒大小约为35 nm,而共沉淀方法产生的较小的纳米颗粒,平均晶粒尺寸为22 nm。值得注意的是,在水热法中将草酸作为封盖剂的引入将晶粒尺寸降低15%至约30 nm,而在共沉淀法中,它意外地将晶粒尺寸增加了20%,导致纳米颗粒的平均晶粒尺寸为26 nm。此外,与通过热液方法合成的样品(约0.5%)相比,在共同沉淀的样品中发现晶格内的应变更高(约0.8%)。这些发现强调了合成方法和封盖剂对KTP纳米颗粒的大小,形态和结构完整性的重要影响。这种见解对于优化针对光学设备,光子学和量子技术的各种应用量身定制的KTP纳米颗粒的合成至关重要。水热方法显示出在产生较大纳米颗粒的功效,而草酸作为涂料剂的存在在控制晶粒尺寸和增强结构稳定性方面起着关键作用。